Refine Your Search

Topic

null

Search Results

Standard

Standard Sheet Steel Thickness and Tolerances

2024-03-04
J1058_202403
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Electroplating and Related Finishes

2023-05-22
J474_202305
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc.
Standard

Product Analysis - Permissible Variations from Specified Chemical Analysis of a Heat or Cast of Steel

2021-07-15
J409_202107
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
Standard

Solders

2018-08-24
J473_201808
The choice of the type and grade of solder for any specific purpose will depend on the materials to be joined and the method of applying. Those with higher amounts of tin usually wet and bond more readily and have a narrower semi-molten range than lower amounts of tin. For strictly economic reasons, it is recommended that the grade of solder metal be selected that contains least amount of tin required to give suitable flowing and adhesive qualities for application. All the lead-tin solders, with or without antimony, are usually suitable for joining steel and copper base alloys. For galvanized steel or zinc, only Class A solders should be used. Class B solders, containing antimony usually as a substitute for some of the tin or to increase strength and hardness of the filler metal, form intermetallic antimony-zinc compounds, causing the joint to become embrittled. Lead-tin solders are not recommended for joining aluminum, magnesium, or stainless steel.
Standard

Automotive Compacted Graphite Iron Castings

2018-02-15
J1887_201802
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
Standard

Wrought Aluminum Applications Guidelines

2018-01-10
J1434_201801
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

Zinc Alloy Ingot and Die Casting Compositions

2018-01-09
J468_201801
SIMILAR SPECIFICATIONS—UNS Z33521, former SAE 903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former SAE 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2018-01-09
J2477_201801
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Welding, Brazing, and Soldering - Materials and Practices

2018-01-09
J1147_201801
The Joint AWS/SAE Committee on Automotive Welding was organized on January 16, 1974, for the primary purpose of facilitating the development and publication of various documents related to the selection, specification, testing, and use of welding materials and practices, particularly for the automotive and related industries. A secondary purpose is the dissemination of technical information.
Standard

Cast Copper Alloys

2018-01-09
J462_201801
This standard prescribes the chemical and mechanical requirements for a wide range of copper base casting alloys used in the automotive industry. It is not intended to cover ingot. (ASTM B30 is suggested for this purpose.)
Standard

Chemical Compositions of SAE Wrought Stainless Steels

2018-01-09
J405_201801
The chemical composition of standard types of wrought stainless steels are listed in ASTM Specification A240. The UNS 20000 series designates nickel-chromium manganese, corrosion resistant types that are nonhardenable by thermal treatment. The UNS 30000 series are nickel-chromium, corrosion resistant steels, nonhardenable by thermal treatment. The UNS 40000 however, includes both a hardenable, martensitic chromium steel and nonhardenable, ferritic, chromium steel. Reference to SAE J412 is suggested for general information and usage of these types of materials. See Table 1.
Standard

Magnesium Alloys

2017-12-20
J464_201712
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

Automotive Ductile (Nodular) Iron Castings

2017-12-20
J434_201712
This SAE standard covers the minimum mechanical properties measured on separately cast test pieces of varying thickness and microstructural requirements for ductile iron castings used in automotive and allied industries. Castings may be specified in the as-cast or heat-treated condition. If castings are heat-treated, prior approval from the customer is required. The appendix provides general information on chemical composition, microstructure and casting mechanical properties, as well as other information for particular service conditions. In this standard SI units are primary and in-lb units are derived.
Standard

Categorization and Properties of Dent Resistant, High Strength, and Ultra High Strength Automotive Sheet Steel

2017-03-22
J2340_201703
This SAE Recommended Practice defines and establishes mechanical property ranges for seven grades of continuously cast high strength automotive sheet steels that can be formed, welded, assembled, and painted in automotive manufacturing processes. The grade of steel specified for an identified part should be based on part requirements (configuration and strength) as well as formability. Material selection should also take into consideration the amount of strain induced by forming and the impact strain has on the strength achieved in the finished part. These steels can be specified as hot-rolled sheet, cold-reduced sheet, uncoated, or coated by hot dipping, electroplating, or vapor deposition of zinc, aluminum, and organic compounds normally applied by coil coating. The grades and strength levels are achieved through chemical composition and special processing. Not all combinations of strength and coating types may be commercially available. Consult your steel supplier for details.
Standard

Standardized Dent Resistance Test Procedure

2015-04-28
J2575_201504
These test procedures were developed based upon the knowledge that steel panel dent resistance characteristics are strain rate dependent. The “quasi-static” section of the procedure simulates real world dent phenomena that occur at low indenter velocities such as palm-printing, elbow marks, plant handling, etc. The indenter velocity specified in this section of the procedure is set to minimize material strain rate effects. The dynamic section of the procedure simulates loading conditions that occur at higher indenter velocities, such as hail impact, shopping carts, and door-to-door parking lot impact. Three dent test schedules are addressed in this procedure. Schedule A is for use with a specified laboratory prepared (generic) panel, Schedule B is for use with a formed automotive outer body panel or assembly, and Schedule C addresses end product or full vehicle testing.
Standard

Standard Sheet Steel Thickness and Tolerances

2015-04-28
J1058_201504
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Chemical Compositions of SAE Carbon Steels

2014-06-30
J403_201406
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
X