Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

A Precise Clamping Force Control Strategy for Electro-Mechanical Braking System Based on Nonlinear Characteristics Compensation

2024-04-09
2024-01-2322
Electro-Mechanical Braking (EMB) system, which completely abandons the traditional hydraulic device, realizes complete human-vehicle decoupling and integrates various functions without adding additional accessories, could meet the requirements of the future intelligent driving technology for high-quality braking control. However, there are significant internal interference of nonlinear characteristics such as mechanical friction and system variable stiffness during the actual working process of EMB, and these make the accuracy and rate of the clamping force control decline. This paper proposes a precise clamping force control strategy for EMB based on nonlinear characteristics compensation. First, we systematically analyze the working principle of EMB, and establish the mathematical model of EMB system including motor, transmission mechanism and friction. At the same time, some typical experiments are designed to identify internal parameters of friction model.
Technical Paper

An Adaptive Clamping Force Control Strategy for Electro-Mechanical Brake System Considering Nonlinear Friction Resistance

2024-04-09
2024-01-2282
The Electronic Mechanical Braking (EMB) system, which offers advantages such as no liquid medium and complete decoupling, can meet the high-quality active braking and high-intensity regenerative braking demands proposed by intelligent vehicles and is considered one of the ideal platforms for future chassis. However, traditional control strategies with fixed clamping force tracking parameters struggle to maintain high-quality braking performance of EMB under variable braking requests, and the nonlinear friction between mechanical components also affects the accuracy of clamping force control. Therefore, this paper presents an adaptive clamping force control strategy for the EMB system, taking into account the resistance of nonlinear friction. First, an EMB model is established as the simulation and control object, which includes the motor model, transmission model, torque balance model, stiffness model, and friction model.
Technical Paper

Research on Autonomous Driving Decision Based on Improved Deep Deterministic Policy Algorithm

2022-03-29
2022-01-0161
Autonomous driving technology, as the product of the fifth stage of the information technology revolution, is of great significance for improving urban traffic and environmentally friendly sustainable development. Autonomous driving can be divided into three main modules. The input of the decision module is the perception information from the perception module and the output of the control strategy to the control module. The deep reinforcement learning method proposes an end-to-end decision-making system design scheme. This paper adopts the Deep Deterministic Policy Gradient Algorithm (DDPG) that incorporates the Priority Experience Playback (PER) method. The framework of the algorithm is based on the actor-critic network structure model. The model takes the continuously acquired perception information as input and the continuous control of the vehicle as output.
Technical Paper

Active Brake Wheel Cylinder Pressure Control Based On Integrated Electro-Hydraulic Brake System

2022-03-29
2022-01-0293
With the development of the automobile industry, the requirements of quick response and high performance are put forward for the brake system. Since the traditional brake system cannot achieve these, the international brake parts manufacturers put forward an integrated electro-hydraulic brake system -the 1-Box. It can realize active brake through the servo motor. In addition, by controlling the pressure of the servo cylinder and working with solenoid valves, the wheel cylinder pressure can be controlled. However, it has some problems, such as hydraulic hysteresis disturbance and complex friction obstruction, which cause obstacles to the accurate control of wheel cylinder pressure. In this paper, the active braking pressure control strategy of wheel cylinders is designed based on 1-Box.
Technical Paper

The Virtual Boosted DISI Engine Model Development Based on Artificial Neural Networks

2022-03-29
2022-01-0383
To efficiently reduce the required experimental data and improve the prediction accuracy, a virtual engine model has been built by integrating an artificial neural network (ANN) system consisting of multiple subnets with the genetic algorithm (GA). The GA algorithm could reduce the risk of local minima and lead to a more efficient training process. The engine model has been adopted to predict the combustion phases (including CA10, CA50 and CA90), exhaust gas temperature, brake specific fuel consumption rate (be) and engine emissions which are un-burnt hydrocarbon (UBHC), NOx and CO. The results are then compared with the experimental data from around 5000 operating points of a boosted DISI engine running at universal performance map and conditions with various valve timing configurations. The mean absolute errors of combustion phases are all below 1.0 crank angle degree. The averaged errors of the exhaust gas temperature and be are 10.1 K and 1.1%, respectively.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Combustion System Development in GAC Turbocharged Miller GDI Engine with 0.5L/Cylinder

2020-04-14
2020-01-0838
GAC Group has set up two modular engine families, G and GS, for various vehicle classes equipping demands. G family engines, which have already gone through three generations, target for the higher torque and power, the lower fuel consumption and the future strict emission standards. For the latest generation, new technologies were added to achieve the development goals based on the previous modular engines. For example, miller combustion cycle with increased compression ratio is introduced in the newer engine combustion system. Additional key technologies such as 350 bar injection system and high tumble intake ports are also applied. The combustion system development, which established on the GAC Combustion Controlling System (GCCS), was facilitated by integrated use of advanced optical measurements and computational fluid dynamics for improving the in-cylinder flow, fuel sprays and the interaction between them.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

Pressure Tracking Control of Electro-Mechanical Brake Booster System

2020-04-14
2020-01-0211
The Electro-Mechanical Brake Booster system (EMBB) is a kind of novel braking booster system, which integrates active braking, regenerative braking, and other functions. It usually composes of a servo motor and the transmission mechanism. EMBB can greatly meet the development needs of vehicle intelligentization and electrification. During active braking, EMBB is required to respond quickly to the braking request and track the target pressure accurately. However, due to the highly nonlinearity of the hydraulic system and EMBB, traditional control algorithms especially for PID algorithm do not work well for pressure control. And a large amount of calibration work is required when applying PID algorithms to pressure control in engineering.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Pressure Optimization Control of Electro-Mechanical Brake System in the Process of ABS Working

2019-04-02
2019-01-1104
The electro-mechanical brake booster (EMBB) and hydraulic control unit (HCU) constitute the electro-mechanical brake system, which can meet the requirements of brake system for intelligent vehicles. It does not need vacuum source, provides active braking function, have high control accuracy and fast response. But it has two electronic control units (ECU), which need coordinated control. When ABS is triggered, the pressure of the master cylinder keeps rising and falling, and the pressure fluctuates greatly. This will lead to noise and reduce the durability of the system. In this paper, a pressure optimization control strategy under ABS condition is proposed. Firstly, the structure and control strategy of EMBB are introduced. Secondly, the braking characteristics without pressure optimization control are analyzed. Thirdly, based on the demand of maximum cylinder pressure, a three-closed-loop pressure optimization control strategy is established.
Journal Article

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

2019-04-02
2019-01-0678
With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Journal Article

Design and Power-Assisted Braking Control of a Novel Electromechanical Brake Booster

2018-04-03
2018-01-0762
As a novel assist actuator of brake system, the electromechanical brake (EMB) booster has played a significant role in the battery electric vehicles and automatic driving vehicles. It has advantages of independent to vacuum source, active braking, and tuning pedal feeling compared with conventional vacuum brake booster. In this article, a novel EMB booster system is proposed, which is consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction by gears and ball screw, a servo body, and a reaction disk. Together with the hydraulic control unit, it has two working modes: active braking for automatic drive and passive braking for driver intervention. The structure and work principle of the electric brake booster system is first introduced. The precise control from pedal force to hydraulic pressure is the key for such a power-assisted brake actuator. We translate the control problem of force feedback control to position tracking control.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
Technical Paper

Research on a Novel Electro-Hydraulic Brake System and Pressure Control Strategy

2018-04-03
2018-01-0764
Based on the research and analysis of the current brake systems, this paper presents a novel electro-hydraulic brake system, which can better meet the functional requirements. The system mainly contains a master cylinder, two brake hydraulic cylinders and drive motors, two transmission mechanisms, thirteen solenoid valves, pedal force simulator, etc. Since the proposed brake system uses a dual motor along with two brake hydraulic cylinders, it has advantages in providing fast pressure response, flexible working modes, high precision and strong fault tolerance. In order to facilitate the study of pressure control algorithm for the proposed brake system, a mathematical model of the brake system is firstly established, then a multiplexed time-division pressure control algorithm is proposed to realize the simultaneous or partially simultaneous pressure control, which ensures the high precision and short response time.
Technical Paper

ABS Control Algorithm Based on Direct Slip Rate for Hybrid Brake System

2018-04-03
2018-01-0830
The brake-by-wire system (BBW) is better match the new energy vehicle in the future direction of development. The electro-mechanical brake (EMB) is lack of the brake failure backup and need a high 42 V voltage for the power supply. This paper presents a new brake-by-wire hybrid brake system (HBS) with the electro-hydraulic brake (EHB) equipped on the front wheels and the EMB equipped on the rear wheels. The combination of these two brake-by-wire systems has advantages of both the EHB and EMB system. The EMB on the rear wheels totally removing the rear pipes and can be simply mounted. In addition, since the need of brake torque on the rear axle is relatively small, the power supply of EMB can be reduced to 12 V. Meanwhile, the EHB on the front wheels has the failure backup function through the hydraulic line. The HBS can quickly and accurately regulate four wheels brake force of vehicles which can well meet the requirement of antilock brake system (ABS).
X