Refine Your Search

Topic

Author

Search Results

Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

International Space Station Environmental Control and Life Support Emergency Response Verification for Node 1

2008-06-29
2008-01-2136
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off-nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware utilized during the Node 1 Element Qualification phase.
Technical Paper

International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

2007-07-09
2007-01-3185
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

2007-07-09
2007-01-3102
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
Technical Paper

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2004-07-19
2004-01-2546
The Major Constituent Analyzer (MCA) is an essential part of the International Space Station (ISS) environmental control and life support system. The analyzer provides continuous readout of the partial pressures of six gases, nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O) in the various ISS U.S. on-orbit modules. Continuous readout of the partial pressures of these gases is critical to verifying safe operation of the Atmosphere Revitalization (AR) system, Atmosphere Control System (ACS), and crew safety for Airlock Extravehicular Activities (EVAs). The MCA encountered some operational interruptions since being launched to orbit on Flight 5A in February 2001. Electronic, software, and hardware modifications and on-orbit crew maintenance of the MCA were necessary to restore its capability.
Technical Paper

International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

2004-07-19
2004-01-2387
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.
Technical Paper

Determination of On-Orbit Cabin Air Loss from the International Space Station (ISS)

2004-07-19
2004-01-2597
The International Space Station (ISS) loses cabin atmosphere mass at some rate. Due to oxygen partial pressures fluctuations from metabolic usage, the total pressure is not a good data source for tracking total pressure loss. Using the nitrogen partial pressure is a good data source to determine the total on-orbit cabin atmosphere loss from the ISS, due to no nitrogen addition or losses. There are several important reasons to know the daily average cabin air loss of the ISS including logistics planning for nitrogen and oxygen. The total average daily cabin atmosphere loss was estimated from January 14 to April 9 of 2003. The total average daily cabin atmosphere loss includes structural leakages, Vozdukh losses, Carbon Dioxide Removal Assembly (CDRA) losses, and other component losses.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
Technical Paper

A Spectrophotometric Analyzer for Aqueous Samples in Microgravity

1999-07-12
1999-01-2032
The development of a spectrophotometric analyzer for use on water samples in microgravity environments is discussed. The instrument is constructed around a commercial spectrophotometer, the Hewlett-Packard HP8453, with a separate turbidimetric analyzer, here a modified Hach 2100P ratio turbidimeter. Flow-through sample cells were constructed for each instrument to support microgravity use and sample deaeration. Spectrophotometric analyses on aqueous samples on orbit are sensitive to the presence of undissolved gases in the samples. In a micro-g environment, free gas in samples can and does remain suspended, clouding the mixture and interfering with spectral optical density measurements. This paper discusses the design of a spectrophotometric analyzer, with particular emphasis on the merits of two approaches to eliminating free gas interferences in on-orbit water analyses: hyperbaric gas redissolution and deaeration across a hydrophobic membrane.
Technical Paper

Reduction in the Iodine Content of Shuttle Drinking Water: Lessons Learned

1999-07-12
1999-01-2117
Iodine is the disinfectant used in U.S. spacecraft potable water systems. Recent long-term testing on human subjects has raised concerns about excessive iodine consumption. Efforts to reduce iodine consumption by Shuttle crews were initiated on STS-87, using hardware originally designed to deiodinate Shuttle water prior to transfer to the Mir Space Station. This hardware has several negative aspects when used for Shuttle galley operations, and efforts to develop a practical alternative were initiated under a compressed development schedule. The alternative Low Iodine Residual System (LIRS) was flown as a Detailed Test Objective on STS-95. On-orbit, the LIRS imparted an adverse taste to the water due to the presence of trialkylamines that had not been detected during development and certification testing. A post-flight investigation revealed that the trialkylamines were released during gamma sterilization of the LIRS resin materials.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Humidity Condensate Sampling System for Shuttle, Mir and International Space Station

1998-07-13
981764
Archival sampling of potable water and condensate for ground laboratory analysis has been an important part of the Shuttle-Mir program because of coolant leaks and other events on Mir that have affected water quality. We report here the development of and preliminary results from a novel device for single phase humidity condensate collection at system pressures. The sampler consists of a commercial-off-the-shelf Teflon® bladder and a custom reinforced Nomex® restraint that is sized properly to absorb the stress of applied pressures. A plastic Luer-Lock disconnect, with poppet actuated by a mating Luer-Lock fitting, prevents the contents from being spilled during transport. In principle, a sampler of any volume can be designed. The empty mass of the reusable one-liter sampler is only 63 grams. Several designs were pressure tested and found to withstand more than 3 atmospheres well in excess of typical spacecraft water or wastewater system pressures.
Technical Paper

Total Organic Carbon Analyzer For ISS

1998-07-13
981765
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space Station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon (TOC), total inorganic carbon (TIC), total carbon (TC), pH, and conductivity, to ensure that crew health is protected during consumption of reclaimed water. The Crew Health Care System (CHeCS) for ISS includes an analyzer that has been designed to meet this requirement. The analyzer is adapted from commercially successful technology, and it measures TOC and TIC throughout the range from 1 to 50,000 μg/L, and TC from 1 to 100,000 μg/L. It measures pH between 2.0 and 12.0 pH units, and conductivity from 0.1 to 300 μmho/cm. The analyzer is scheduled for launch to ISS on mission 2A.1.
Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

1997-07-01
972461
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

Solid Phase Extraction of Polar Compounds in Water

1997-07-01
972465
The Water and Food Analytical Laboratory, at the Johnson Space Center is developing an alternative to EPA Method 625 for analyzing semivolatile organic compounds in water. The current EPA method uses liquid-liquid extraction. The alternative method being developed differs in the sample preparation phase by replacing gravity-dependent liquid-liquid extraction with solid phase extraction (SPE). The ultimate goal is to incorporate the optimum SPE conditions into an automated sample preparation process. The method shows promise with regard to anticipated polar compounds. Fourteen SPE resins and nine elution solvents were compared. For typical analytes encountered by our laboratory, a styrene-divinylbenzene SPE resin and an elution solvent mixture of methylene chloride and ethyl ether were found to give the highest extraction recoveries. A study is in progress to remove water from the extracts before GC/MS analysis.
X