Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Exploration of Machine Learning and Neural Networks for ADAS and L4 Vehicle Perception

2024-07-18
Convolutional neural networks are the de facto method of processing camera, radar, and lidar data for use in perception in ADAS and L4 vehicles, yet their operation is a black box to many engineers. Unlike traditional rules-based approaches to coding intelligent systems, networks are trained and the internal structure created during the training process is too complex to be understood by humans, yet in operation networks are able to classify objects of interest at error rates better than rates achieved by humans viewing the same input data.
Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Probabilistically Extended Ontologies a basis for systematic testing of ML-based systems

2024-07-02
2024-01-3002
Autonomous driving is a hot topic in the automotive domain, and there is an increasing need to prove its reliability. They use machine learning techniques, which are themselves stochastic techniques based on some kind of statistical inference. The occurrence of incorrect decisions is part of this approach and often not directly related to correctable errors. The quality of the systems is indicated by statistical key figures such as accuracy and precision. Numerous driving tests and simulations in simulators are extensively used to provide evidence. However, the basis of all descriptive statistics is a random selection from a probability space. The difficulty in testing or constructing the training and test data set is that this probability space is usually not well defined. To systematically address this shortcoming, ontologies have been and are being developed to capture the various concepts and properties of the operational design domain.
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Development of an Evaluation Methodology for PIV Measurements of Low-Frequency Flow Phenomena on the Vehicle Underbody

2024-06-12
2024-01-2939
Aeroacoustics is important in the automotive industry, as it significantly influences driving comfort. Particularly in the case of battery electric vehicles (BEVs), the flow noise is already crucial at lower driving speeds, since these generate barely any drive noise and the masking effects produced by the engine are eliminated. Due to the increasing importance of drag minimization and elimination of the exhaust system, the underbody of BEVs is typically very streamlined and exhibits a low acoustic interference potential. However, even small geometric modifications to the vehicle can lead to changes in the flow around the vehicle and consequently to significant noise sources. Thus, significant flow resonances in the low frequency range below 30 Hz have been detected on certain vehicle configurations. Initial investigations have shown that the flow around the front wheel spoilers is relevant for the development of the flow phenomenon.
Technical Paper

High-Speed Acoustic Imaging for the Localisation of Impulse-like Sound Emissions from Automotive Components

2024-06-12
2024-01-2959
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras.
Technical Paper

Application of a Seat Transmissibility Approach to Experience Measured or Predicted Seat-rail Vibration in a Multi-Attribute Simulator

2024-06-12
2024-01-2962
Computer modelling, virtual prototyping and simulation is widely used in the automotive industry to optimize the development process. While the use of CAE is widespread, on its own it lacks the ability to provide observable acoustics or tactile vibrations for decision makers to assess, and hence optimize the customer experience. Subjective assessment using Driver-in-Loop simulators to experience data has been shown to improve the quality of vehicles and reduce development time and uncertainty. Efficient development processes require a seamless interface from detailed CAE simulation to subjective evaluations suitable for high level decision makers. In the context of perceived vehicle vibration, the need for a bridge between complex CAE data and realistic subjective evaluation of tactile response is most compelling. A suite of VI-grade noise and vibration simulators have been developed to meet this challenge.
Technical Paper

FE Modelling and Experimental Evaluation for the Surface Integrity of Thin Walled Aluminum Alloy

2024-06-01
2024-26-0429
Abstract: The present study discusses about the effect of installation torque on the surface and subsurface deformations for thin walled 7075 aluminum alloy used in Aerospace applications. A FE model was constructed to predict the effect of torque induced stresses on thin walled geometry followed with an experimentation. A detailed surface analysis was performed on 7075 aluminum in terms of superficial discontinuities, residual stresses, and grain deformations. The localized strain hardening resulting from increased dislocation density and its effect on surface microhardness was further studied using EBSD and micro indentation. The predicted surface level plastic strain of .25% was further validated with grain deformations measured using optical and scanning electron microscopy.
Technical Paper

Effect of Fatigue Loads on Behavior of 2024-T351 Aluminum Conduits for Aircraft Hydraulic Applications

2024-06-01
2024-26-0431
Abstract: Hydraulic systems in aircrafts largely comprise of metallic components with high strength to weight ratios which comprise of 2024 Aluminum and Titanium Ti-6AL-4V. The selection of material is based on low and high pressure applications respectively. For aircraft fluid conveyance products, hydraulic conduits are fabricated by axisymmetric turning to support flow conditions. The hydraulic conduits further carries groves within for placement of elastomeric sealing components. This article presents a systematic study carried out on common loads experienced by fluid carrying conduits and the failure modes induced. The critical failure locations on fluid carrying conduits of 2024-T351 Aluminum was identified, and the Scanning Electron Microscope (SEM) analysis was carried out to identify the characteristic footprints of failure surfaces and crack initiation. Through this analysis, a load to failure mode correlation is established.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Post Flight Simulation of Dynamic Responses at the Satellite Interface of a Typical Launch Vehicle During Solid Motor Ignition

2024-06-01
2024-26-0461
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). The analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Formal Technique for Fault Detection and Identification of Control Intensive Application of Stall Warning System using System Theoretic Process Analysis

2024-06-01
2024-26-0471
Faults if not detected and processed will create catastrophe in closed loop system for safety critical applications in automotive, space, medical, nuclear, and aerospace domains. In aerospace applications such as stall warning and protection/prevention system (SWPS), algorithms detect stall condition and provide protection by deploying the elevator stick pusher. Failure to detect and prevent stall leads to loss of lives and aircraft. Traditional Functional Hazard and Fault Tree analyses are inadequate to capture all failures due to the complex hardware-software interactions for stall warning and protection system. Hence, an improved methodology for failure detection and identification is proposed. This paper discusses a hybrid formal method and model-based technique using STPA to identify and diagnose faults and provide monitors to process the identified faults to ensure robust design of the indigenous stall warning and protection system (SWPS).
Technical Paper

Velocity Estimation of a Descending Spacecraft in Atmosphereless Environment using Deep Learning

2024-06-01
2024-26-0484
Landing of spacecraft on Lunar or Martian surfaces is the last and critical step in inter planetary space missions. The atmosphere on earth is thick enough to slow down the craft but Moon or Mars does not provide a similar atmosphere. Moreover, other factors such as lunar dust, availability of precise onboard navigational aids etc would impact decision making. Soft landing meaning controlling the velocity of the craft from over 6000km/h to zero. If the craft’s velocity is not controlled, it might crash. Various onboard sensors and onboard computing power play a critical role in estimating and hence controlling the velocity, in the absence of GPS-like navigational aids. In this paper, an attempt is made using visual onboard sensor to estimate the velocity of the object. The precise estimation of an object's velocity is a vital component in the trajectory planning of space vehicles, particularly those designed for descent onto lunar or Martian terrains, such as orbiters or landers.
X