Refine Your Search

Topic

Search Results

Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Headroom, Roof Crush, and Belted Excursion in Rollovers

2005-04-11
2005-01-0942
Based upon a review of the literature and new test data, the human and vehicle factors leading to head-to-roof contact in rollovers are quantified and illustrated. Vehicle design countermeasures and suggested areas of research are presented. Higher and stronger roofs and improved restraints must be analyzed as a system to evaluate the potential benefits in rollovers.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

Injury Mechanisms and Field Accident Data Analysis in Rollover Accidents

1997-02-24
970396
Rollover accidents are responsible for a significant percentage of crash injuries. Increasing seat belt restraint use is the most effective way to reduce rollover injuries. Injuries to restrained occupants are also of interest. It has been suggested that head/neck injuries are caused by roof crush, and that modification to roof structures and seat belt systems would lead to a substantial reduction in severe rollover injuries. Field accident data and rollover testing are used to evaluate the relationship between roof crush, seat belt design, and severe rollover injuries.
Technical Paper

Response of Out-of-Position Dummies in Rear Impact

1994-03-01
941055
Field accident data suggest that a significant number of occupants involved in rear impacts may be positioned at impact other than in the “Normal Seated Position” - the optimum restraint configuration that has been used almost exclusively in published seat testing. Pre-impact vehicle acceleration from braking, swerving, or a prior frontal impact could cause an occupant to be leaning forward at the instant of the collision, creating a situation where the vehicle “ride-up” potential would be limited. No rear impact tests involving yielding, production-type seats with forward-leaning dummies are found in the literature. Thirty rear-impact sled tests with a forward-leaning, “Out-of-Position” Hybrid III dummy are presented. Tests were performed with a calibrated seat set in either the rigidified or yielding configuration and with the dummy either unbelted or restrained by a production three-point belt system. Test speeds ranged from 5 to 20 mph.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Rear Stiffness Coefficients Derived from Barrier Test Data

1991-02-01
910120
Rear impacts in the crash test data base compiled by the NHTSA are analyzed and compared to the CRASH3 rear stiffness coefficients. The CRASH3 values do not represent the test data adequately. This is because the values were derived from limited data, and because some of the rear moving barrier test data were miscoded as fixed barrier tests. A review of the larger NHTSA data base does not support the CRASH3 assumption that vehicles of similar size (wheelbase) have similar rear stiffness characteristics. Therefore, it is important when reconstructing individual accidents to use crash test data specific to the vehicles involved. Repeated rear fixed barrier test data on four vehicles are analyzed to study the data trend at speeds below and above the NHTSA test data. Constant stiffness and constant force models are compared and a combination of the two is shown to fit available test data.
Technical Paper

A Comparison Between NHTSA Crash Test Data and CRASH3 Frontal Stiffness Coefficients

1990-02-01
900101
The appropriateness of the set of eight frontal stiffness coefficients used by the CRASH3 program to estimate vehicle deformation energy (and to subsequently derive estimates of vehicle delta-V) is examined. This examination consists of constructing so-called CRASH energy plots based on 402 frontal fixed barrier impact tests contained in the NHTSA's Vehicle Test Center Data Base (VTCDB) digital tape file. It is concluded that the use of category coefficients within the CRASH3 program can result in large delta-V errors, reaffirming the inappropriateness of this program for use in individual accident reconstructions. The use of the CRASH3 category stiffness coefficients is seen to generally overestimate vehicle energy absorption for vehicles with small amounts of frontal crush and to underestimate vehicle energy absorption for vehicles sustaining large crush.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

Application of Kinematic Concepts to Side Impact Injury Analysis

1990-02-01
900375
An understanding of fundamental kinematic relationships among the several deforming surfaces of side-impacting bullet and target vehicle, occupant protection system and occupant is fundamental to rational design of crash injury counter-measures. Unfortunately, such understanding is not easy to achieve. Side impacts address the full range of bodily contacts and injuries in a way that challenges analysis. Each bodily area and organ requires individual consideration for adequate injury protection. This paper presents a simplified graphical analysis of occupant kinematics and injury exposure applied specifically to the NHTSA-proposed crabbed moving deformable barrier (MDB) compartment impact, as described in NHTSA's Notice of Proposed Rulemaking (NPRM) for Federal Motor Vehicle Safety Standard (FMVSS) 214, issued in January of 1988 [NHTSA 1988 (1)*]. Projections are offered regarding the potential of thoracic injury counter-measures.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Facial Impact Response — A Comparison of the Hybrid III Dummy and Human Cadaver

1988-10-01
881719
Results indicate the need for a redesigned Hybrid III face capable of accurate force and acceleration measurements. New instrumentation and methods for facial fracture detection were developed, including the application of acoustic emissions. Force/ deflection information for the human cadaver head and the Hybrid III ATD were generated for the frontal, zygomatic, and maxillary regions.
Technical Paper

Evaluation of Seat Back Strength and Seat Belt Effectiveness in Rear End Impacts

1987-11-01
872214
The issues of front seat energy absorption and seat belt effectiveness are investigated first through the review of prior experimental and analytical studies of rear impact dynamics. These prior studies indicate that the current energy absorption characteristic of seats is a safety benefit. Prior efforts to construct a rigidized seat indicate that such designs are likely to be impractical due to excessive weight and cost. Additionally, these studies indicate that seat belts provide an important safety function in rear impacts. Static tests of production seats were conducted, added to an existing data base, and analyzed to better understand the strength and energy absorbing characteristics of production seats. Crash test results from the New Car Assessment Program as well as earlier test programs were analyzed to describe the response of occupants and seats in rear impact and the protective function of seat belts in such collisions.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine II

1986-10-27
861881
Results of two studies concerning the interrelationship of velocity, compression and injury in blunt thoracic impact to anesthetized swine have been combined to provide a data base of forty-one experiments. impact velocity ranged from ∼8-30 m/s and applied normalized chest compression from ∼0.10-0.30. Experimental subjects were suspended in the spine-horizontal position and loaded midsternally through a 150 mm diameter, flat rigid disk on an impacting mass propelled upward from below. Measurements and computations included sternal and spinal accelerations, intracardiovascular overpressures, physiological responses, injury, as assessed by necropsy, and different forms of the velocity and compression exposure severity parameters. The significance of both compression and velocity as parameters of impact exposure severity is clearly demonstrated. Qualitatively, exacerbation of injury was seen when either variable was increased with the other held constant.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
X