Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of Stiffness Coefficients on Output Variables in EDSMAC4 Simulations

2006-04-03
2006-01-1396
Numerous studies have validated EDSMAC4 as an effective method of reconstructing automobile collisions; however, little has been done to investigate the effect of varying stiffness coefficients on the results of accident reconstruction and simulation analyses. When comparing simulations to staged collisions, the stiffness coefficients are frequently well defined; however, this is not always the case in real world accidents. Six vehicle-to-vehicle test impacts were modeled using EDSMAC4. Stiffness coefficients for the vehicles were obtained from test data of exemplar vehicles. After modeling the impacts with the base stiffness level, the stiffness coefficients were modified for both vehicles either plus (+) or minus (−) 25%. The impacts were re-run and the predicted vehicle damage (maximum crush and pattern), impact severity (Delta-V), peak acceleration, impact duration, post impact trajectory, and impact force was compared.
Technical Paper

Modeling the Effects of Seat Belt Pretensioners on Occupant Kinematics During Rollover

2006-04-03
2006-01-0246
The results of a number of previous studies have demonstrated that seat-belted occupants can undergo significant upward and outward excursion during the airborne phase of vehicular rollover, which may place the occupant at risk for injury during subsequent ground contacts. Furthermore, testing using human volunteers, ATDs, and cadavers has shown that increasing tension in the restraint system prior to a rollover event may be of value for reducing occupant displacement. On this basis, it may be argued that pretensioning the restraint system, utilizing technology developed and installed primarily for improving injury outcome in frontal impacts, may modify restrained occupant injury potential during rollover accidents. However, the capacity of current pretensioner designs to positively impact the motion of a restrained occupant during rollover remains unclear.
Technical Paper

Occupant Mechanics in Rollover Simulations of High and Low Aspect Ratio Vehicles

2006-04-03
2006-01-0451
Vehicle aspect ratio has been reported as a significant factor influencing the likelihood of fatality or severe injury/fatality during single-vehicle rollover crashes. To investigate this, dynamic simulations of friction-induced rollover accidents were performed using different roof heights, but otherwise identical vehicle parameters and initial conditions. Higher aspect ratios tended to cause the leading side roof to impact first, with significant impact force. The roof impact forces during the first roll of higher-roofed vehicles were primarily laterally directed with respect to the vehicle. Impact locations during subsequent rolls were less predictable. Lower aspect ratios produced higher impact forces on the trailing side roof that were more vertically oriented with respect to the vehicle. The vertically oriented forces potentially create greater risk for severe neck or head injuries.
Technical Paper

Evaluation of Human Surrogate Models for Rollover

2005-04-11
2005-01-0941
Anthropomorphic test dummies (ATDs) have been validated for the analysis of various types of automobile collisions through pendulum, impact, and sled testing. However, analysis of the fidelity of ATDs in rollover collisions has focused primarily on the behavior of the ATD head and neck in axial compression. Only limited work has been performed to evaluate the behavior of different surrogate models for the analysis of occupant motion during rollover. Recently, Moffatt et al. examined head excursions for near- and far-side occupants using a laboratory-based rollover fixture, which rotated the vehicle about a fixed, longitudinal axis. The responses of both Hybrid III ATD and human volunteers were measured. These experimental datasets were used in the present study to evaluate MADYMO ATD and human facet computational models of occupant motion during the airborne phase of rollover.
Technical Paper

Development of a Computational Method to Predict Occupant Motions and Neck Loads During Rollovers

2005-04-11
2005-01-0300
The mechanics of on-road, friction-induced rollovers were studied with the aid of a three-dimensional computer code specifically derived for this purpose. Motions of the wheels, vehicle body, occupant torso, and head were computed. Kane's method was utilized to develop the dynamic equations of motion in closed form. On-road rollover kinematics were compared to a dolly-type rollover at lesser initial speed, but generating a similar roll rotation rate. The simulated on-road rollover created a roof impact on the leading (driver's) side, while the dolly rollover simulation created a trailing-side roof impact. No head-to-roof contacts were predicted in either simulation. The first roof contact during the dolly-type roll generated greater neck loads in lateral bending than the on-road rollover. This work is considered to be the first step in developing a combined vehicle and occupant computational model for studying injury potential during rollovers.
Technical Paper

Electromyographic Activity and Posturing of the Human Neck During Rollover Tests

2005-04-11
2005-01-0302
Lateral head motions, torso motions, lateral neck bending angles, and electromyographic (EMG) activity patterns of five human volunteer passengers are compared to lateral motions of a Hybrid III ATD during right-left and left-right fishhook steering maneuvers leading to vehicular tip-up. While the ATD maintained relatively fixed lateral neck angles, live subjects leaned their heads slightly inward and actively utilized their neck musculature to stiffen their necks against the lateral inertial loads. Except for differences in neck lateral bending, the Hybrid III ATD reasonably reflects occupant kinematics during the pre-trip phase of on-road rollovers.
X