Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

Digital Automotive AC Pulldown Prediction in a Real Driving Condition

2019-12-30
2019-01-5090
Automotive Original Equipment Manufacturers (OEMs) are always striving to deliver fast Air-Conditioning (AC) pulldown performance with consistent distribution of cabin temperature to meet customer expectations. The ultimate test is the OEM standard, called “AC Pull Down,” conducted at high ambient temperature and solar load conditions with a prescribed vehicle drive cycle. To determine whether the AC system in the vehicle has the capacity to cool the cabin, throughout the drive cycle test, cabin temperature measurements are evaluated against the vehicle target. If the measured cabin temperatures are equal or lower than the required temperatures, the AC system is deemed conventional for customer usage. In this paper, numerical predictions of the cabin temperatures to replicate the AC pulldown test are presented. The AC pulldown scenario is carried out in a digital Climatic Wind Tunnel simulation. The solution used in this study is based on a coupled approach.
Technical Paper

Towards a Quiet Vehicle Cabin Through Digitalization of HVAC Systems and Subsystems Aeroacoustics Testing and Design

2019-06-05
2019-01-1476
With the rise of electric autonomous vehicles, it has become clear that the cabin of tomorrow will drastically evolve to both improve ride experience and reduce energy consumption. In addition, autonomy will change the transportation paradigm, leading to a reinvention of the cabin seating layout which will offer the opportunity to climate systems team to design quiet and even more energy efficient systems. Consequently, Heat and Ventilation Air Conditioning (HVAC) systems designers have to deliver products which perform acoustically better than before, but often with less development time. To success under such constraints, designers need access to methods providing both assessment of the system (or subsystems) acoustic performance, and identification of where the designs need to be improved to reduce noise levels. Such methods are often needed before a physical prototype is requested, and thus can only be achieved in a timely manner through digital testing.
Technical Paper

Automotive HVAC Noise Reduction

2018-06-13
2018-01-1519
The Heating Ventilation and Air Conditioning system (HVAC) is a compact and complex system designed to provide thermal comfort inside the car cabin. The system is composed of various components: fan, flaps, thermal exchangers, filters and specific turned ducts allowing thermal conditioning and airflow distribution to car cabin areas. Nowadays, as thermal engine noises are reduced and electrified car sales are increasing, the HVAC could be a major noise source inside the car cabin that could induce significant discomfort to passengers. HVAC noise issues are well known and solved. Many of them are related to the fans’ electrical motor, such as ticking and harmonic noises. The remaining noises are mainly aeroacoustic linked to the fan and interactions between HVAC components and airflow. HVAC behavior also consists of transfer paths and acoustic transparency responsible of emerging noises.
Technical Paper

Audio Synthesis and Sound Quality of Automotive Air-Conditioning Systems

2017-06-05
2017-01-1887
While electric and hybrid vehicles are becoming increasingly common, the issue of engine noise is becoming less important, because it does not dominate the overall noise perceived in the passenger compartment in such vehicles anymore. However, at the same time, other sound sources such as air conditioning, start to emerge, which can also cause annoyance. The CEVAS project, involving VALEO, CETIM, University of Technology of Compiègne, ESI GROUP and GENESIS, deals with the acoustic simulation and perception of automotive air-conditioning (HVAC) and electric battery cooling (BTM) systems. While the other partners focused their work on the aeroacoustic characterization, modeling and simulation, GENESIS’ part in the project is dedicated to HVAC sound synthesis and perception. In order to do the synthesis of the acoustic spectra provided by the partners of the project, an additive model was used.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Aeraulic and Aeroacoustic Experimental Characterization of Academic and Industrial HVAC Flaps

2016-06-15
2016-01-1812
The noise radiated inside the car cabin depends on many sources such as the embedded equipments like the Heating, Ventilation and Air Conditioning (HVAC) module. An HVAC is a compact and complex system composed of several elements: blower, flaps, thermal exchangers, ducts… Air provided by an HVAC is blown by a blower passing through different components and then distributed to car cabin areas. Interactions between airflow and the HVAC fixed components generate noises that emerge in the car cabin. CEVAS project, managed by the automotive equipment manufacturer Valeo, is aiming to develop a prediction tool which will provide HVAC noise spectrum and sound quality data. The tool is based, in particular, on aeroacoustic characterization of individual elements and associations of elements.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Technical Paper

Aeroacoustic Prediction Methods of Automotive HVAC Noise

2015-06-15
2015-01-2249
Passengers' thermal comfort inside a car cabin is mainly provided by the Heating, Ventilation and Air Conditioning (HVAC) module. Air provided by HVAC is blown via a blower, passing through different components: flaps, thermal exchangers, ducts… and then distributed to car cabin areas. Interaction between airflow and HVAC components generates noises that emerge in car cabin. Due to this fact, noise is naturally created and its level is linked to flow rate. Valeo is aiming, though CEVAS project, to develop a prediction tool which will provide HVAC spectrum and sound quality data. This tool will be based, in particular, on aeroacoustic measurements using 2N-ports model and Particle Image Velocimetry methods to provide characteristics of HVAC components.
X