Refine Your Search

Topic

Search Results

Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Research on Garbage Recognition of Intelligent Sweeper Vehicle Based on Improved PSPNet Algorithm

2022-03-29
2022-01-0220
The sweeper vehicle plays a very key role in maintaining the urban environment. If the sweeper vehicle can accurately and efficiently identify and classify the ground garbage in the working process, it can greatly improve the working efficiency of the sweeper vehicle and reduce the consumption of manpower. Although the deep learning algorithm based on DUC and PSPNet has high accuracy, the recognition speed is low. ENet is a lightweight network, which greatly improves efficiency, but significantly sacrifices accuracy. This paper presents an improved real-time detection lightweight network based on PSPNet, which takes into account the operation speed and accuracy. The network takes PSPNet as the backbone network, and increases the stride in the convolution process, to reduce the size of the feature map and reduce the amount of calculation.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Analytical Modeling and Multi-Objective Optimization of the Articulated Vehicle Steering System

2022-03-29
2022-01-0879
The articulated steering system is widely used in engineering vehicles due to its high mobility and low steering radius. The design parameters have a vital impact on the selection of the steering system assemblies, such as the operation stroke, pressure, and force of the hydraulic cylinders during the steering process, which will affect the system weight. The system energy consumption is also relevant to the geometry parameters. According to the kinetic analysis of the steering system and dynamic analysis of the steering process, the kinetic model of an engineering vehicle steering system is built, and the length and pressure variation of the cylinder is calculated and validated by the field test. The influence of the factors is analyzed based on the established model. To lower the system weight, needed pressure, and force, the multi-objective particle swarm optimization method is initiated to optimize the geometry parameter of the articulated steering system.
Technical Paper

Analysis of Alcohol-Impaired Driving on Vehicle Dynamic Control of Steering, Braking and Acceleration Behaviors in Female Drivers

2021-04-06
2021-01-0859
Road traffic accidents resulting from alcohol-impaired driving are increasing globally despite several measures, currently in place, to curb the trend. For this reason, recent research aims at integrating alcohol early-detection systems and driving simulator experiments to identify intoxicated drivers. However, driving simulator experiments on drunk driving have focused mostly on male participants than female drivers whose characteristics have scarcely been explored. Hence in this paper, vehicle dynamic control inputs on steering, braking, and acceleration performance of 75 licensed female drivers with an upshot of alcohol at four different blood alcohol concentration (BAC) levels (0%, 0.03%, 0.05%, and 0.08%) were investigated. The participants completed simulated driving in a fixed-based simulator experiment coupled with real-time ecological scenarios to extract discrete responses.
Technical Paper

Structural Design and Simulation Analysis of an Intelligent Speed Bump

2021-04-06
2021-01-0324
As a traffic deceleration device, speed bumps are widely used to reduce the speed of vehicles and have a good effect. However, in special occasions such as hospital entrance, the bumps caused by ordinary speed bumps are likely to aggravate the pain of patients. In view of this situation, an intelligent speed bump is designed in this paper, which can adjust the height of the speed bump according to the speed of the passing vehicles. When a low-speed vehicle passes by, the elastic link slider module works, so that the upper surface of the speed bump can be elastically lowered to improve the ride comfort of low-speed vehicles. When a high-speed vehicle passes by, the centrifugal locking module will lock the elastic link slider module, and the upper surface of the speed bump will be locked, which plays a role in speed limit. In this paper, SolidWorks and ADAMS/car are used to analyze the process of vehicle passing through the intelligent speed bump.
Technical Paper

A Study on Heat Dissipation of Electric Vehicle Motor Based on Heat-Pipe Heat Transfer Analysis

2021-04-06
2021-01-0208
With the increasingly serious problems of environmental pollution and energy shortage, electric vehicles have a promising future. As a core component of electric vehicles, the drive motor is developing towards high power density of which remains temperature rise problems, which affects the performance, efficiency and service life of the drive motor. Liquid cooling has high energy consumption and poor reliability. The heat-pipe has excellent heat conduction and temperature uniformity capabilities. Therefore, this paper proposes a heat pipe-based drive motor heat dissipation system to make the heat-pipe act on the inside of the motor to reach a specified range of driving conditions. The drive motor can better dissipate heat through the heat-pipe. Firstly, analysis of the internal heat generation mechanism of the motor, heat transfer characteristics of the heat-pipe and the heat-pipe layout plan was established.
Technical Paper

Research on Heat Management Performance of Heat Pipe-Fin Based on Optimal Design

2021-04-06
2021-01-0752
As one of the core components of electric vehicle, the performance of power battery is largely determined by thermal management system. Air cooling is difficult to meet the heat dissipation requirements of high-power power batteries. Liquid cooling arrangement is complex and requires high sealing performance. Phase change materials will increase the mass of battery packs. Heat pipes have good heat conduction, temperature equalization performance and light weight, and it is an ideal cooling and heat dissipation technology with efficient cooling fins. In this paper, a thermal management system of power battery based on heat pipe and fin is proposed. The maximum temperature and wall temperature difference of power battery are reduced by heat pipe and fin heat dissipation. The influence of different fin spacing and heights on the thermal management system is studied, and then the fin spacing and height are optimized.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Research on the Performance of Magnetorheological Fluid Auxiliary Braking Devices Thermal Management System Based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

Research on the Best Driving Speed of the Deceleration Bump

2020-04-14
2020-01-1088
The ride performance and stability of the vehicle will decrease while the vehicle passing a deceleration bump with relatively high speed. If the speed is too low, the road efficiency and ride comfort will be affected. It is essential to identify the proper speed taking into account all the factors. In this paper, the dynamic model of the vehicle passing through the deceleration bump is established. Three kinds of indicators vibration weighted acceleration RMS, maximum vertical vibration acceleration and wheel load impact coefficient, are used to comprehensively evaluate the ride comfort and safety. The highway model, vehicle model, and common trapezoidal cross-sections bump models are set up in Carsim. Parameters such as vertical acceleration and tire force at different vehicle speeds are obtained. Then use the spline interpolation method to fit the data, and comprehensively consider the three indicators to get the best speed.
Technical Paper

Passenger Cabin’s Parking Cooling System Based on TEC and Air Conditioning Condensate Water

2019-04-02
2019-01-1066
In the passenger cabin of the parking under the summer sun, the air’s average temperature will reach about 60°C. Such temperature can cause discomfort to the person who has just entered the passenger cabin, also can damage components of the passenger cabin. The reason for this phenomenon is because it is not convective with the outside air. Some vehicles use the electric power to drive the blower in order to ventilate, but the air’s temperature of cabin is so high that the blower’s effect of ventilation is limited. The system proposes to use solar energy to drive the automobile blower and the thermoelectric cooler(TEC) in order to cool the cabin’s air, and use the air-conditioning condensate water collected during the driving process to cool the TEC’s hot end to improve the cooling efficiency.
Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

The Measures of Improving Power Generation Stability for Harvesting Automobile Exhaust Energy

2018-04-03
2018-01-1367
The automobile exhaust energy can be recovered by the thermoelectric module generator(TEG). Owing to the complex urban traffic, the exhaust gas’s temperature fluctuations are resulted, which means the unstable hot-end temperature of the TEG. By installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, it is possible to appropriately reduce the temperature fluctuation, but there is still a fluctuation of the TEG’s power output. Then by adding voltage filter circuit (VFC) after the TEG, the power output stability can be improved. This research uses SHCM and VFC to improve the stability of the exhaust gas generation. Firstly, the three-dimensional heat transfer model of the exhaust pipe thermoelectric power generation system is established. The heat capacity materials with low thermal resistance and high heat capacity were selected as the research object based on previous research.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
X