Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

2006-08-30
2006-01-2434
One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

Technology Assessment of a Supersonic Business Jet

2005-10-03
2005-01-3393
This paper presents a quantitative process to track the progress of technology developments within NASA’s Vehicle Systems Program (VSP) as implemented on a Supersonic Business Jet (SBJ). The process, called the Technology Metric Assessment and Tracking (TMAT) process, accounts for the temporal aspects of technology development programs such that technology portfolio assessments, in the form of technological progress towards VSP sector goals, may be tracked and assessed. Progress tracking of internal research and development programs is an essential element to successful strategic endeavors and justification of the pursuit of capital projects [1].
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

Formulation of an Integrating Framework for Conceptual Object-Oriented Systems Design

2003-09-08
2003-01-3053
In this paper, a brief overview is given of the different alternatives to an integrating computational framework. A new framework will be introduced, which incorporates the latest computational techniques and more importantly a mind-set emphasizing flexibility, modularity, portability and re-usability. This introduction will include a thorough review of the fundamental design decisions that went into developing this new integrated computational framework. Distributed object computing extends an object-oriented system which allows objects to interact across heterogenous networks and interoperate as a unified whole. Integrated computing frameworks are discussed, together with data transport techniques such as Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP) to achieve platform, code and meta-model independent integration.
Technical Paper

A Technique for Selecting Emerging Technologies for a Fleet of Commercial Aircraft to Maximize R&D Investment

2001-09-11
2001-01-3018
A solid business case is highly dependent upon a strategic technology research and development plan in the early phases of product design. The embodiment of a strategic technology development plan is the identification and subsequent funding of high payoff technology programs that can maximize a company’s return on investment, which entails both performance and economic objectives. This paper describes a technique whereby the high payoff technologies may be identified across multiple platforms to quantitatively justify resource allocation decisions and investment opportunities. A proof of concept investigation was performed on a fleet of subsonic, commercial aircraft.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

A Parametric Design Environment for Including Signatures Analysis in Conceptual Design

2000-10-10
2000-01-5564
System effectiveness has become the prime metric for the evaluation of military aircraft. As such, it is the designer's goal to maximize system effectiveness. Industry documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness. Today's operating environments demand low observable aircraft which are able to reliably eliminate valuable, time critical targets. Thus, it is desirable to be able to evaluate the signatures of a vehicle, as well as the influence of signatures on the systems effectiveness of a vehicle. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section and must be considered from the very beginning of the design process. This research strives to meet these needs by developing a parametric geometry radar cross section prediction tool.
Technical Paper

Forecasting Technology Uncertainty in Preliminary Aircraft Design

1999-10-19
1999-01-5631
An evolved version of the Technology Identification, Evaluation, and Selection (TIES) method is presented that provides techniques for quantifying technological uncertainty associated with immature technologies. Uncertainty in this context implies forecasting. Forecasting the impact of immature technologies on a system is needed to provide increased knowledge to a decision-maker in the conceptual and preliminary phases of aircraft design. The increased knowledge allows for proper allocation of company resources and program management. The TIES method addresses the milestones encountered during a technology development program, the sources of uncertainty during that development, a potential method for bounding and forecasting the uncertainty, and a means to quantify the impact of any emerging technology. A proof of concept application was performed on a High Speed Civil Transport concept due to its technically challenging customer requirements.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

An Application of a Technology Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle

1999-10-19
1999-01-5633
In today’s atmosphere of lower U.S. defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. The methodology presented in this paper details a comprehensive and structured process in which to explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a forecasting environment for use in conjunction with defined technology scenarios. The advantages and limitations of the method will be discussed, as well its place in an overall methodology used for technology infusion.
Technical Paper

Enabling Advanced Design Methods in an Internet-Capable Framework

1999-10-19
1999-01-5578
The enabling of advanced design methods in an internet-capable framework will be discussed in this paper. The resulting framework represents the next generation of design and analysis capability in which engineering decision- making can be done by geographically distributed team members. A new internet technology called the lean-server approach is introduced as a mechanism for granting Web browser access to frameworks and domain analyses. This approach has the underpinnings required to support these next generation frameworks - collaboratories. A historical perspective of design frameworks is discussed to provide an understanding of the design functionality that is expected from framework implementations to insure design technology advancement. Two research areas were identified as being important to the development of collaboratories: design portals and collaborative methods.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
X