Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Method for Determining the Bunsen Coefficient of Bio-Hybrid Fuels

2021-09-21
2021-01-1187
Since the amount of dissolved gas in fuels is an important quantity for the description of aeration in injection nozzles, this paper presents Bunsen absorption coefficients for different conventional and bio-hybrid fuels and their effect on nozzle flow phenomena. Bio-hybrid fuels can be produced both on the basis of biomass and with the help of regeneratively generated electrical energy. In contrast to previous work, the Bunsen coefficient was determined for a wide pressure range from approximately 10 MPa to 32.5 MPa. In fact, some of the fuels considered here were never before objects of investigation in terms of their solubility properties. In this work, large differences regarding the Bunsen absorption coefficient between a conventional fuel and a bio-hybrid fuel were observed. For determining the solubility of the fuels, a manometric-volumetric method was used.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
X