Refine Your Search

Topic

Search Results

Standard

Overlap Shear Test for Sealant Adhesive Bonding of Automotive Glass Encapsulating Material to Body Opening

2021-01-07
CURRENT
J1836_202101
This recommended practice defines a procedure for the construction of a lap shear specimen for the purpose of testing the bondability of an automotive sealant adhesive to the elastomeric material used in automotive encapsulating. The present practice of encapsulating automotive glass is described as molding elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with cured elastomeric material bonded to the perimeter of thee glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

Surface Match Verification Method for Pressure Sensitive Adhesively Attached Components

2021-01-07
CURRENT
J2215_202101
This SAE Recommended Practice applies to evaluation of the conformance match condition existing between two surfaces. Evaluation of this conformance may be especially useful in bonded applications although it may also have relevance to bolted adjacent surface joint conditions. Since good bonding surface conformity is necessary for providing optimal bond performance with pressure sensitive adhesives, the purpose of this document is to provide a method of evaluating the conformance match of the mating surfaces. This document is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document. Tool types, materials, application tools, and component contact area evaluation methods are included as part of this document.
Standard

Methods of Tests for Automotive-Type Sealers, Adhesives, and Deadeners

2021-01-07
CURRENT
J243_202101
This SAE Recommended Practice contains a series of test methods for use in measuring characteristics of automotive-type sealers, adhesives, and deadeners. The test methods which are contained in this document are as follows: ADS-1—Methods of Determining Viscosity ADS-2—Low Temperature Tests ADS-3—Weld-Through Tests ADS-4—Enamel, Lacquer, and Fabric Staining Test ADS-5—Wash-Off Resistance Test ADS-7—Solids Test ADS-8—Flash Point Test ADS-9—Sag and Bridging Tests ADS-10—Flow Test The intent of this document is to provide a series of test methods which can be used in testing the various qualities of sealers, adhesives, and deadener material. In later revisions of this document, attempts will be made to reduce the number of tests now presented. The specific temperatures and times at which some of these tests are to be conducted are not dictated in these test procedures, but they will be found in the material standards which govern each type of material to be tested.
Standard

Overlap Shear Test for Automotive Type Sealant for Stationary Glass Bonding

2021-01-07
CURRENT
J1529_202101
This SAE Recommended Practice defines a procedure for the construction and testing of glass to metal lap shears for determining shear strength of sealant adhesives for automotive stationary glass bonding. This procedure can also be used for fiber reinforced plastic (FRP) when used in place of metal.
Standard

Method of Viscosity Test for Automotive Type Adhesives, Sealers, and Deadeners

2021-01-07
CURRENT
J1524_202101
This SAE Recommended Practice contains a series of test methods for use in measuring the viscosity of automotive-type adhesives, sealers, and deadeners. The test methods which are contained in this document are as follows: 1.1 Brookfield® Method 1.2 Castor-Severs Rheometer or Pressure Flowmeter 1.3 Penetrometer 1.4 Capillary Rheometer 1.5 Plate Rheometers
Standard

Standard Rainflow File Format

2018-08-24
CURRENT
J2623_201808
This SAE Standard provides a definition of a rainflow file format. This type of simple text file would contain all relevant information about the rainflow cycle content of a time history. Included information are Comments, Signal Range, Signal Mean, Number of Cycles, Signal Maximum, Signal Minimum. Rainflow cycle counting has become the most accepted procedure for identifying material fatigue relevant cycles in complex variable amplitude load time histories. The cycle counting methods account for the effects of material plasticity and material memory of prior deformation, and the resulting compressed history information is used by durability analysts to estimate the effects of a given service or test history.
Standard

Technical Report on Low Cycle Fatigue Properties Ferrous and Non-Ferrous Materials

2018-08-24
CURRENT
J1099_201808
Information that provides design guidance in avoiding fatigue failures is outlined in this SAE Information Report. Of necessity, this report is brief, but it does provide a basis for approaching complex fatigue problems. Information presented here can be used in preliminary design estimates of fatigue life, the selection of materials and the analysis of service load and/or strain data. The data presented are for the “low cycle” or strain-controlled methods for predicting fatigue behavior. Note that these methods may not be appropriate for materials with internal defects, such as cast irons, which exhibit different tension and compression stress-strain behavior.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Recommended Guidelines for Load/Deformation Testing of Elastomeric Components

2017-01-05
CURRENT
J1636_201701
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components under conditions of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as Static Stiffness. This is also referred to as a "Static Deflection Test."
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Metric Spherical Rod Ends

2012-10-15
CURRENT
J1259_201210
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in the types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Metric Yoke Type Rod Ends

2012-10-15
CURRENT
J1651_201210
This SAE Standard provides dimensions, tolerances, material, and heat treatment for yoke type rod ends with metric threads and for use with metric size clevis pins.
Standard

Metric Ball Joints

2012-10-15
CURRENT
J2213_201210
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
Standard

Ball Joints

2012-10-15
CURRENT
J490_201210
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
CURRENT
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Performance Test Procedure - Ball Joints and Spherical Rod Ends

2012-10-15
CURRENT
J1367_201210
The purpose of this test procedure is to provide a uniform method of testing commercial spherical rod end bearings to determine their performance characteristics under specific application situations. This procedure is an extension of the dimensional requirements for spherical rod end bearings as set forth in SAE J1120 and J1259. The loads, number of cycles, definition of failure, etc., are to be agreed to by the user and supplier. This procedure can also be used as the basis for testing ball joints covered by SAE J490.
X