Refine Your Search

Topic

Search Results

Standard

Fusion Splice for Aerospace Fiber Optic Cables

2021-07-23
CURRENT
AS6506/1
This specification includes detailed requirements for a fiber optic cable splice compliant with AS6506. Every requirement of the parent standard, AS6506, which applies to this detail specification is identified below by the word “applicable.” In any case in which a requirement of this specification varies from that of the parent standard, the alternate requirement is described. If a parent standard requirement does not apply, the words used are “not applicable.”
Standard

Splicer, Fusion, Fiber Optic, Aerospace Non-Explosion-Proof (Type II)

2020-01-30
CURRENT
AS6479/2
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss, particularly in aerospace applications, but not in flammable or explosive atmospheres (Type II). The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace, Explosion-Proof (Type I)

2020-01-30
CURRENT
AS6479/1
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss in hazardous environments (potentially flammable or explosive atmospheres, Type I), particularly aerospace applications. The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Multi-Transmitter Bidirectional Fiber-Optic Data Bus for Distributed Aircraft Control Systems

2011-03-22
CURRENT
AS5370A
This specification applies to a communication protocol for networked control systems. The protocol provides peer-to-peer communication for networked control and is suitable for implementing both peer-to-peer and master-slave control strategies. This specification describes services for all seven protocol layers. In the layer 7 specification, it includes a description of the types of messages used by applications to exchange application and network management data.
Standard

Digital Fiber Optic Link Loss Budget Methodology for Aerospace Platforms

2007-11-20
HISTORICAL
AS5603
This SAE Technical Report is an Aerospace Standard, compliant with the Organization and Operating Guide for the Aerospace Council of the SAE Technical Standards Board. It is consistent with the category (5) definition of an Aerospace Standard under Section 6.0, Technical Reports, in Paragraph 6.1.2. This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is, specifically, intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies.
X