Refine Your Search

Search Results

Viewing 1 to 14 of 14
Standard

Use Cases for Communication Between Plug-in Vehicles and Off-Board DC Charger

2023-08-31
CURRENT
J2836/2_202308
This SAE Information Report, SAE J2836-2, establishes use cases and general information for communication between plug-in electric vehicles (PEVs) and the DC off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772 hybrid coupler or SAE J1772 AC Level 2-type coupler on DC power lines, using the AC power lines or the pilot line for power line communication (PLC), or dedicated communication lines that are further described in SAE J2847-2. The specification supports DC energy transfer via forward power flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in Section 5.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2023-05-24
CURRENT
J2931/4_202305
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2022-10-09
WIP
J2847/6

SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator.

This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.

Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2021-03-10
CURRENT
J3072_202103
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Communication for Wireless Power Transfer Between Light-Duty Plug-in Electric Vehicles and Wireless EV Charging Stations

2020-09-29
CURRENT
J2847/6_202009
SAE J2847/6 establishes minimum requirements for communication between an electric vehicle and an inductive battery charging system for wireless power transfer (WPT). Where relevant, this document notes—but does not formally specify—interactions between the vehicle and vehicle operator. This document leverages the work of the SAE J2954 Alignment and Controls Sub-Team in the Wireless Power Transfer and Alignment Task Force by extending a JSON-based message set (protocol) originally developed to bench test wireless energy transfer interoperability between unmatched Ground Assembly (GA) and Vehicle Assembly (VA) systems (i.e., components manufactured by different companies). SAE J2847/6 furthers that work by adding messages sufficient to indicate that proper coil alignment has been achieved, initialize the sub-systems for wireless charging, ramp-up to full power, perform active wireless power transfer, and terminate the WPT session.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2018-07-18
CURRENT
J2836_201807
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Interconnection Requirements for Onboard, Utility-Interactive Inverter Systems

2015-05-19
HISTORICAL
J3072_201505
This SAE Standard J3072 establishes interconnection requirements for a utility-interactive inverter system which is integrated into a plug-in electric vehicle (PEV) and connects in parallel with an electric power system (EPS) by way of conductively-coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems and IEEE 1547.1 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
Standard

Use Cases for Customer Communication for Plug-in Electric Vehicles

2015-05-07
HISTORICAL
J2836/5_201505
This SAE Information Report J2836/5™ establishes the use cases for communications between Plug-In Electric Vehicles (PEV) and their customers. The use case scenarios define the information to be communicated related to customer convenience features for charge on/off control, charge power curtailment, customer preference settings, charging status, EVSE availability/access, and electricity usage. Also addresses customer information resulting from conflicts to customer charging preferences. This document only provides the use cases that define the communications requirements to enable customers to interact with the PEV and to optimize their experience with driving a Plug-In Electric Vehicle. Specifications such as protocols and physical transfer methods for communicating information are not within the scope of this document.
Standard

Digital Communications for Plug-in Electric Vehicles

2014-12-11
HISTORICAL
J2931/1_201412
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the third version of this document and completes the effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2014-10-21
HISTORICAL
J2931/4_201410
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles using Smart Energy Profile 2.0

2013-11-05
HISTORICAL
J2847/1_201311
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836/1™ use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 Schema and Application Specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Digital Communications for Plug-in Electric Vehicles

2012-09-07
HISTORICAL
J2931/1_201209
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the second version of this document and completes the step 2 effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
X