Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Reconstructing Vehicle and Occupant Motion from EDR Data in High Yaw Velocity Crashes

2021-04-06
2021-01-0892
Among the several data recorded by a typical motor vehicle’s event data recorder (EDR) prior to, during and after a crash event, are sampled time histories of longitudinal and lateral components of delta-v. The delta-v components are not measured directly but are calculated by numerically integrating the outputs of two perpendicular accelerometers contained within the EDR box. As currently designed and implemented a typical EDR does not measure yaw velocity or track vehicle heading during the impulse phase of a crash. Without this yaw information to orient the accelerometers relative to the fixed ground, the delta-v values calculated by the EDR through direct integration of its measured acceleration components should not be interpreted as representing absolute changes in vehicle velocity, especially in cases where the yaw velocity is high. EDR-calculated delta-v components must be adjusted to account for the yaw motion that occurred during acquisition of the data.
Technical Paper

Fatal and Severe Injuries in Rear Impact; Seat Stiffness in Recent Field Accident Data

2008-04-14
2008-01-0193
A decade ago, James, et.al. published a detailed study of the available NASS data on severe rear impacts, with findings that “… stiffened or rigid seat backs will not substantially mitigate severe and fatal injuries in rear impacts.” No field accident study has since been advanced which refutes this finding. Advocates of rigidized seat backs often point to specific cases of severe rear impacts in which MAIS 4+ injuries are associated with seat back deformation, coupled with arguments supporting stiffer seatback designs. These arguments are generally based upon laboratory experiments with dummies in normal seating positions. Recent field accident data shows that generally, in collisions where the majority of societal harm is created, yielding seats continue to provide benefits, including those associated with whiplash associated disorders (WAD).
Technical Paper

Derivation of Vehicle-to-Vehicle Frontal Crash Pulse Estimates from Barrier Crash Data

2008-04-14
2008-01-0174
The BSAN crash pulse model has been shown to provide useful information for restraint sensing evaluation and for structural force-displacement studies in flat fixed rigid barrier (FFRB) crashes. This paper demonstrates a procedure by which the model may be extended for use with central and offset vehicle to vehicle (VTV) crashes through appropriate combinations of vehicle parameters.
Technical Paper

Roadway Asphalt Damage Force Analysis for Accident Reconstruction

2008-04-14
2008-01-0173
In reconstruction of on-roadway vehicle accidents, tire-road surface friction coefficient, mu (μ), can be estimated using a variety of available data. Common ranges and values for μ are used in calculations forming the foundation for most accident reconstruction techniques. When the roadway surface is gouged or disrupted by vehicle components, accounting of dissipated energy can be successful where supporting force data exists. Roadway gouge forces can vary widely depending upon such factors as road surface construction, surface temperature, and the velocity and geometry of the gouging mechanism. Such dissipated energy can be significant in accounting of total reconstruction energy. This paper presents experiments aimed at quantifying gouge force by controlled pavement gouging tests.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Load Path Considerations for Side Crash Compatibility

2007-04-16
2007-01-1176
Heavier, larger pickups and SUVs are bound to encounter lighter, smaller passenger vehicles in many future accidents. As the fleet has evolved to include more and more SUVs, their frontal structures are often indistinguishable from pickup fronts. Improvements in geometric compatibility features are crucial to further injury prevention progress in side impact. In corner crashes where modern bullet passenger car (PC) bumpers make appropriate geometrical overlap with target PC rocker panels, concentrated loads sometimes disrupt foam and plastic bumper corners, creating aggressive edges. In situations where sliding occurs along the structural interface, these sharp edges may slice through doors, panels and pillars. End treatments for such bumper beams should be designed to reduce this aggressive potential.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

ADVANCED ROOF DESIGN FOR ROLLOVER PROTECTION

2001-06-04
2001-06-0006
Roof strength clearly affects the probability of occupant head and neck injury in light vehicle rollovers. Despite this, most manufacturers continue to design and build vehicles with inadequate roof strength. From experimental and biomechanics evidence and rollover crash data, we present the case that weak, antiquated roof designs contribute to severe head and neck injuries. We discuss the deficiencies in modern roof designs, how they cause severe head and neck injuries, and the limitations inherent in the Federal roof crush standard, FMVSS 216. We describe cost-effective examples of materials and technologies that can provide adequate roof strength to protect occupants in most rollovers without imposing significant weight penalties. Finally, we discuss an approach to dynamic roof strength testing that is based on what occurs in an actual, serious injury-producing rollover.
Technical Paper

Roof Crush Versus Occupant Injury From 1988 to 1992 NASS

1998-02-23
980210
Rollover accidents account for a large number of serious to fatal injuries annually. In the past, these injuries were often the result of unrestrained occupant ejection. Subsequent to mandatory belt use laws, a larger percentage of these injuries occur inside the vehicle, and the head and neck areas sustain a substantial number of these injuries. An analytical effort to understand rollover injuries, using the field accident data of the NASS files and residual headroom as an indicator, was reported by the authors at the 1996 ESV conference in Melbourne, Australia. This paper describes the relationship between roof crush and restrained occupant injury in rollover accidents as derived from the analysis of 1988-1992 NASS files. It extends the residual headroom parameter to the entire population of head, face and neck occupants injured inside the compartment.1
Technical Paper

The Relationship Between Vertical Velocity and Roof Crush in Rollover Crashes

1998-02-23
980211
Rollover accidents account for a large number of serious to fatal injuries annually. In the past, these injuries were often the result of unrestrained occupant ejection. Subsequent to mandatory belt use laws, a larger percentage of these injuries occur inside the vehicle, and the head and neck areas sustain a substantial number of these injuries. Rollovers have been characterized as violent events, roof crush as the natural consequence of such violence. Further, head and neck injury have been thus considered unavoidable, even with occupant use of the production restraints. This paper will describe the relationship between the three dimensional extent (severity) of roof crush and the equivalent drop test contact velocity as derived from physical experiments and tests. The drop test contact velocity is directly related to the cumulative change of velocity experienced by a vehicle as a result of roof contact deformation during a rollover accident by validated computer simulations.
Technical Paper

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side

1998-02-23
980215
The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Human Subject Experiments In Occupant Response To Rollover With Reduced Headroom

1998-02-23
980212
This paper describes some human subject experiments in occupant response to rollover with reduced headroom. The results suggest that with a nominal 10 cm of head room, 7.5 to 15 cm of torso excursion in production belts and more than 15 cm of roof intrusion, serious neck injury is likely. Brain damage/head injury is more likely from a combination of roof rail crush and high change of angular roll rate.
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

Effect of Seat Stiffness in Out-of-Position Occupant Response in Rear-End Collisions

1996-11-01
962434
Accident data suggest that a significant percentage of rear impacts involve occupants seated in other than a “Normal Seated Position”. Pre-impact acceleration due to steering, braking or a prior frontal impact may cause the driver to move away from the seat back prior to impact. Nevertheless, virtually all crash testing is conducted with dummies in the optimum “Normal Dummy Seated Position”. A series of 7 rear impact sled tests, having a nominal AV of 21 mph, with Hybrid III dummies positioned in the “Normal Dummy Seated Position”, “Out of Position” and slightly “Out of Position” is presented. Tests were performed on yielding production Toyota and Mercedes Benz seats as well as on a much stiffer modified Ford Aerostar seat. Available Hybrid III upper and lower neck as well as torso instrumentation was used to analyze and compare injury potential for each set of test parameters.
Technical Paper

Conservation of Momentum Analysis of Two-Dimensional Colliding Bodies, With or Without Trailers

1994-03-01
940566
This paper presents a method of automobile collision analysis based on conservation of momentum. The analysis is applied to the collision of two two-dimensional bodies, either or both of which may be attached to a trailer. Newton's laws of motion are employed to determine changes in linear and angular velocities for the two-dimensional colliding bodies. Knowing the masses and rotational inertias and the initial velocities of all bodies at impact, the post-impact velocities can be calculated if appropriate constraints are applied to the bodies' post-collision motion. Various motion constraints, including lock-up, slip, and restitution are examined, and a methodology for modeling vehicle motion experienced during a collision is presented. The full set of basic equations characterizing this conservation-of-momentum analysis is presented with sufficient detail to allow their implementation on a programmable calculator or personal computer.
Technical Paper

Photogrammetry and Accident Reconstruction: Experimental Results

1994-03-01
940925
A controlled experiment involving road marks was conducted to compare various photogrammetry practices currently in use in the accident investigation community. The experimental controls and results are discussed for three variations of one 2-D scheme and for six 3-D photogrammetric schemes applied to a similar set of road marks and points. For measurements related to the most frequent issues in traffic accidents, all of the methods are capable of providing usable data. The experimental photographs and corresponding data represent a reference set for developing skills and for comparison with other photogrammetry schemes.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

Lateral Load Sensing Hybrid III Head

1991-10-01
912908
Recent cadaver studies have provided data for the development of force and stiffness characteristics of the side of the human head. A Hybrid III Anthropomorphic Test Dummy (ATD) head was modified to allow direct measurement of impact forces on the parietal and temporal regions by recasting the upper left half of the skull and installing triaxial piezoelectric force transducers. Dynamic impact tests of this modified head were conducted and force/stiffness characteristics for the temporal and parietal areas were compared to existing data on cadaver subjects. It was found that the existing Hybrid III vinyl skin satisfactorily represents the force/stiffness characteristics of the human head in these areas. This modified Hybrid III dummy head was also impacted against typical interior components likely to be contacted during a side impact. The force and acceleration test results are presented.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
X