Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Integration of an End-of-Line System for Vibro-Acoustic Characterization and Fault Detection of Automotive Components Based on Particle Velocity Measurements

2017-06-05
2017-01-1761
The automotive industry is currently increasing the noise and vibration requirements of vehicle components. A detailed vibro-acoustic assessment of the supplied element is commonly enforced by most vehicle manufacturers. Traditional End-Of-Line (EOL) solutions often encounter difficulties adapting from controlled environments to industrial production lines due the presence of high levels of noise and vibrations generated by the surrounding machinery. In contrast, particle velocity measurements performed near a rigid radiating surface are less affected by background noise and they can potentially be used to address noise problems even in such conditions. The vector nature of particle velocity, an intrinsic dependency upon surface displacement and sensor directivity are the main advantages over conventional solutions. As a result, quantitative measurements describing the vibro-acoustic behavior of a device can be performed at the final stage of the manufacturing process.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Journal Article

Further Development of the PNCA: New Panel Noise Contribution Reference-Related (PNCAR)

2012-06-13
2012-01-1539
The Panel Noise Contribution Analysis (PNCA) is a well-known methodology for an airborne Transfer Path Analysis (TPA) in car interior. Pressure contribution from the individual panels at a reference point can be very accurately calculated. Acoustic Trim package treatment can therefore be optimized in terms of frequency and panel area which saves money and time. The method uses only one type of sensors so called particle velocity probes for measuring source strength as well as transfer function (with a reciprocal measurement). Traditionally the PNCA makes use of a big amount of probes at fixed points (about 50) hence non-stationary conditions can be measured as well. Typically the measurement is performed in 3 sessions resulting in 150 individual panels. Because of the low spatial resolution the method can only be used at mid-low frequency range.
Technical Paper

Scan and Paint for Acoustic Leakage Inside the Car

2011-05-17
2011-01-1673
Leakage ranking of vehicle cabin interiors is an important quality index for a car. Noise transmission through weak areas has an important role in the interior noise of a car. Nowadays the acoustic leakage inside a cabin can be measured with different techniques: Microphone array-based holography, Trasmission loss measurement, Beamforming analysis, Sound intensity P-P measurements and ultrasound waves measurements. Some advantages and limits of those measurement approaches for quantifying the acoustic performance of a car are discussed in the first part of this paper. In the second part a new method for fast leakage detection and stationary noise mapping is presented using the Microflown PU probe. This method is called Scan & Paint. The Microflown sensor can measure directly the particle velocity which in the near field is much less affected by background noise and reflection compared with normal microphones.
Technical Paper

Mapping 3D Sound Intensity Streamlines in a Car Interior

2009-05-19
2009-01-2175
Sound source localization techniques in a car interior are hampered by the fact that the cavity usually is governed by a high number of (in)coherent sources and reflections. In the acoustic near field, particle velocity based intensity probes have been demonstrated to be not susceptible to these reflections allowing the individual panel contributions of these (in)coherent sources to be accurately determined. In the acoustic far field (spherical) beam forming techniques have been used outdoors in the free field, which analyze the directional resolution of a sound field incident on the array. Recently these techniques have also been applied inside cars, assuming that sound travels in a straight path from the source to the receivers. However, there is quite some evidence that sound waves do not travel in a straight line.
Technical Paper

Using Acoustic Particle Velocity Sensors for End of Line Control

2009-05-19
2009-01-2155
Acoustic particle velocity sensors can be an alternative sensor category for end of line testing next to microphones, accelerometers or scanning laser vibrometers. As any other category of transducers, particle velocity sensors have their specific features. The acoustic particle velocity field is far less susceptible to background noise than the sound pressure field, allowing acoustic testing to be carried out in a manufacturing environment with significant background noise levels [2]. Close to a vibrating surface, acoustic particle velocity is a good estimate of the normal structural velocity, allowing non contact vibration measurements [4]. The results of some case studies will be summarized.
Technical Paper

A PU Probe Array Based Panel Noise Contribution Analysis Whilst Driving

2009-05-19
2009-01-2123
This paper presents new developments on hot wire anemometer based panel noise contribution analysis. The used sensor allows the direct measurement of particle velocity. Some historical remarks are given and the latest developments of the technique are reported. Four steps are required to determine the panel noise contribution of the interior of a vehicle and to visualize the results in 3D. In a first step the probes are positioned on the interior surfaces and their x, y, z coordinates are measured. Based on these data a 3D geometry model is created. The geometry data are acquired using a specially designed 3D digitizer. The second step is a measurement in a certain mode of operation. This step can be done in a laboratory but it is also possible to perform the measurement whilst driving the vehicle on the road. Stationary as well as non stationary running conditions like e.g. run ups are accessible and do not limit the applicability of the method.
Technical Paper

Microflown based monopole sound sources for reciprocal measurements

2008-03-30
2008-36-0503
Monopole sound sources (i.e. omni directional sound sources with a known volume velocity) are essential for reciprocal measurements used in vehicle interior panel noise contribution analysis. Until recently, these monopole sound sources use a sound pressure transducer sensor as a reference sensor. A novel monopole sound source principle is demonstrated that uses a Microflown (acoustic particle velocity) sensor as a reference sensor. As compared to a sound source that uses a sound pressure transducer as a reference sensor, the new sound sources demonstrated are relatively easy to calibrate, not sensitive to changes in ambient temperatures, and suitable to use in all sorts of acoustic environments.
X