Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Journal Article

Development of the MADYMO Race Car Driver Model for Frontal Impact Simulation and Thoracolumbar Spine Injury Prediction in Indianapolis-type Racing Car Drivers

2008-12-02
2008-01-2975
This paper describes the results of a project to develop a MADYMO occupant model for predicting thoracolumbar (TL) spine injuries during frontal impacts in the Indianapolis-type racing car (ITRC) environment and to study the effect of seat back angle, shoulder belt mounting location, leg hump, and spinal curvature on the thoracolumbar region. The newly developed MADYMO Race Car Driver Model (RCDM) is based on the Hybrid III, 50th percentile male model, but it has a multi-segmented spine adapted from the MADYMO Human Facet Model (HFM) that allows it to predict occupant kinematics and intervertebral loads and moments along the entire spinal column. Numerous simulations were run using the crash pulses from seven real-world impact scenarios and a 70 G standardized crash pulse. Results were analyzed and compared to the real-world impacts and CART HANS® model simulations.
Technical Paper

Brain Injury Prediction for Indy Race Car Drivers Using Finite Element Model of the Human Head

2004-11-30
2004-01-3539
The objective of this work was to evaluate a new tool for assessing brain injury. Many race car drivers have suffered concussion and other brain injuries and are in need of ways of evaluating better head protective systems and equipment. Current assessment guidelines such as HIC may not be adequate for assessing all scenarios. Finite element models of the brain have the potential to provide much better injury prediction for any scenario. At a previous Motorsports conference, results of a MADYMO model of a racing car and driver driven by 3-D accelerations recorded in actual crashes were presented. Model results from nine cases, some with concussion and some not, yielded head accelerations that were used to drive the Wayne State University Head Injury Model (WSUHIM). This model consists of over 310,000 elements and is capable of simulating direct and indirect impacts. It has been extensively validated using published cadaveric test data.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
Technical Paper

Effect of Head-Neck Position on Cervical Facet Stretch of Post Mortem Human Subjects during Low Speed Rear End Impacts

2004-11-01
2004-22-0015
The purpose of this study was to determine the effect of head-neck position on cervical facet stretch during low speed rear end impact. Twelve tests were conducted on four Post Mortem Human Subjects (PMHS) in a generic bucket seat environment. Three head positions, namely Normal (neutral), Zero Clearance between the head and head restraint, and Body Forward positions were tested. A high-speed x-ray system was used to record the motion of cervical vertebrae during these tests. Results demonstrate that: a) The maximum mean facet stretch at head restraint contact occurs at MS4 and MS5 for the Body Forward condition, b) The lower neck flexion moment, prior to head contact, shows a non-linear relationship with facet stretch, and c) “Differential rebound” during rear end impact increases facet stretch.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

Lower Limb: Advanced FE Model and New Experimental Data

2001-11-01
2001-22-0022
The Lower Limb Model for Safety (LLMS) is a finite element model of the lower limb developed mainly for safety applications. It is based on a detailed description of the lower limb anatomy derived from CT and MRI scans collected on a subject close to a 50th percentile male. The main anatomical structures from ankle to hip (excluding the hip) were all modeled with deformable elements. The modeling of the foot and ankle region was based on a previous model Beillas et al. (1999) that has been modified. The global validation of the LLMS focused on the response of the isolated lower leg to axial loading, the response of the isolated knee to frontal and lateral impact, and the interaction of the whole model with a Hybrid III model in a sled environment, for a total of nine different set-ups. In order to better characterize the axial behavior of the lower leg, experiments conducted on cadaveric tibia and foot were reanalyzed and experimental corridors were proposed.
Technical Paper

Development and Field Performance of Indy Race Car Head Impact Padding

2001-11-01
2001-22-0019
The close-fitting cockpit of the modern Indy car single seat race car has the potential to provide a high level of head and neck impact protection in rear and side impacts. Crash investigation has shown that a wide variety of materials have been used as the padding for these cockpits and, as a result, produced varying outcomes in crashes. Additionally, these pads have not always been positioned for optimal performance. The purpose of this study was to investigate the head impact performance of a variety of energy-absorbing padding materials under impact conditions typical of Indy car rear impacts and to identify superior materials and methods of improving their performance as race car head pads. An extensive series of tests with the helmeted Hybrid III test dummy head and neck on an impact mini-sled was conducted to explore head padding concepts.
Technical Paper

Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts

2000-11-01
2000-01-SC13
The purposes of this study were to measure the relative linear and angular displacements of each pair of adjacent cervical vertebrae and to compute changes in distance between two adjacent facet joint landmarks during low posterior- anterior (+Gx) acceleration without significant hyperextension of the head. A total of twenty-six low speed rear-end impacts were conducted using six postmortem human specimens. Each cadaver was instrumented with two to three neck targets embedded in each cervical vertebra and nine accelerometers on the head. Sequential x-ray images were collected and analyzed. Two seatback orientations were studied. In the global coordinate system, the head, the cervical vertebrae, and the first or second thoracic vertebra (T1 or T2) were in extension during rear-end impacts. The head showed less extension in comparison with the cervical spine.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Finite Element Simulation of Ankle/Foot Injury in Frontal Crashes

2000-03-06
2000-01-0156
Finite element models of human body segments have been developed in recent years. Numerical simulation could be helpful when understanding injury mechanisms and to make injury assessments. In the lower leg injury research in NISSAN, a finite element model of the human ankle/foot is under development. The mesh for the bony part was taken from the original model developed by Beaugonin et al., but was revised by adding soft tissue to reproduce realistic responses. Damping effect in a high speed contact was taken into account by modeling skin and fat in the sole of the foot. The plantar aponeurosis tendon was modeled by nonlinear bar elements connecting the phalanges to the calcaneus. The rigid body connection, which was defined at the toe in the original model for simplicity, was removed and the transverse ligaments were added instead in order to bind the metatarsals and the phalanges. These tendons and ligaments were expected to reproduce a realistic response in compression.
Technical Paper

Bending Strength of the Human Cadaveric Forearm Due to Lateral Loads

1999-10-10
99SC24
Ten pairs of thawed fresh-frozen human cadaveric lower arm specimens were subjected to lateral three-point bending. Either the radius or ulna were impacted with a 4.5 kg dropped weight at approximately 3 m/s or tested quasi-statically in a materials testing machine. Fracture occurred primarily near the loading site with an average dynamic peak load of 1370 N and average peak moment of 89 Nm. Differences between the radius and ulna were not significant. Static fracture load and moments were approximately 20% lower. Sectional and mineral properties of each specimen near the fracture sites were measured.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

Development of a Finite Element Model of the Human Neck

1998-11-02
983157
A three-dimensional finite element model of a human neck has been developed in an effort to study the mechanics of cervical spine while subjected to impacts. The neck geometry was obtained from MRI scans of a 50th percentile male volunteer. This model, consisting of the vertebrae from C1 through T1 including the intervertebral discs and posterior elements, was constructed primarily of 8-node brick elements. The vertebrae were modeled using linear elastic-plastic materials, while the intervertebral discs were modeled using linear viscoelastic materials. Sliding interfaces were defined to simulate the motion of synovial facet joints. Anterior and posterior longitudinal ligaments, facet joint capsular ligaments, alar ligaments, transverse ligaments, and anterior and posterior atlanto-occipital membranes were modeled as nonlinear bar elements or as tension-only membrane elements. A previously developed head and brain model was also incorporated.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
Technical Paper

Biomechanical Evaluation and Driver Experience with the Head and Neck Support

1994-12-01
942466
Auto and boat racers suffer fatigue and injury from loading of their necks. While racing, a driver's neck often becomes fatigued because it must support the weight of the head and helmet. In crashes, extreme motions of a driver's unrestrained head relative to the restrained torso cause excessive loads in the driver's neck. These neck loads between the head and torso can cause severe or fatal injuries such as spinal dislocations and basilar skull fractures. A new type of head and neck support has been developed that restrains the driver's head relative to their torso to reduce undesirable head motions and neck loads that cause fatigue and injury. This paper describes recent work, using computer crash simulations, crash dummy tests, and driver experiences, to better understand head and neck injury in racing and to evaluate the performance of a new head and neck support.
Technical Paper

Assessment of Air Bag Deployment Loads with the Small Female Hybrid III Dummy

1993-11-01
933119
This study is an extension of previous work on driver air bag deployment loads which used the mid-size male Hybrid Ill dummy. Both small female and mid-size male Hybrid Ill dummies were tested with a range of near-positions relative to the air bag module. These alignments ranged from the head centered on the module to the chest centered on the module and with various separations and lateral shifts from the module. For both sized dummies the severity of the loading from the air bag depended on alignment and separation of the dummy with respect to the air bag module. No single alignment provided high responses for all body regions, indicating that one test at a typical alignment cannot simultaneously determine the potential for injury risk for the head, neck, and torso. Based on comparisons with their respective injury assessment reference values, the risk of chest injury appeared similar for both sized dummies.
Technical Paper

Biomechanical Performance of a New Head and Neck Support

1990-10-01
902312
The heads of auto racing drivers and military pilots are usually not supported so that neck fatigue and injury can be a serious problem. A new Head And Neck Support (HANS) is being developed to reduce head motions and neck loads. The biomechanical performance of HANS has been evaluated by crash victim modeling with CAL 3-D and by impact sled testing with a Hybrid III dummy. Modeling and testing were conducted at 30 and 35 mph BEV and with acceleration directions from the front, right front, and right lateral. The model and test results show that head motions, neck loading, and the potential for neck injury are all significantly reduced with HANS compared to without HANS.
Technical Paper

Steering Assembly Impacts Using Cadavers and Dummies

1990-10-01
902316
Studies have shown that dummies can be used to study various issues relating to an unrestrained driver's interaction with the steering system in frontal crashes. However, current dummies have limitations in simulation of car occupants and to assess the spectrum of injury types and mechanisms. Human cadaver subjects were used to study abdominal injury and “severe” steering wheel deformation as part of an evaluation of energy absorbing steering systems. A predominant factor influencing abdominal injury in these tests was the impact location of the lower rim, injury being associated with the rim aligned 50 mm below the xiphoid. The dummies developed approximately twice the impact force than the cadaver subjects in these severe tests with a noncompressible column, in part due to the chest of the dummies “bottoming” out on a rigid spine.
X