Refine Your Search

Topic

null

Search Results

Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education Introduction to Aerospace Fiber Optics Technician, Quality Assurance Inspector, or Engineer Hands-on Competencies

2022-10-12
WIP
ARP5602/8A
This document establishes training guidelines applicable to fiber optic technician, quality assurance, or engineer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education Introduction to Aerospace Fiber Optics Installer Hands-on Competencies

2022-10-12
WIP
ARP5602/6A
This document establishes training guidelines applicable to fiber optic installer technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
Standard

A Guideline for Aerospace Platform Fiber Optic Training and Awareness Education

2022-10-12
WIP
ARP5602A
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
Standard

Terminus, Fiber Optic, Harsh Environment, General Specification

2021-11-23
AS8438
This document provides details of test methods that should be taken into consideration when qualifying fiber optic termini to the product specifications (slash sheets). The product specifications (slash sheets) provide pass/fail criteria, optical and physical intermatability, and interoperability requirements for fiber optic termini in circular, rectangular, and modular type aerospace connectors.
Standard

Aerospace Cable, Fiber Optic

2021-09-21
AS5382B
This standard covers jacketed single-fiber multimode and single-mode fiber optic cables for aerospace usage.
Standard

Fiber Optic Harsh Environment Test Methods Cross Reference Document

2021-06-10
AIR6282A
This report provides cross reference matrices detailing current test methods used in the qualification processes of fiber optic connectors, termini and cables for aerospace, telecommunications, and naval applications. The cross-reference allows the end user to select the test methods most suitable for qualifying a component, or to identify alternative test methods where a specific test is not defined in a referenced document. The report also provides information on what area each type of referenced document has been developed for.
Standard

Connectors, Fiber Optic, Advanced, Circular, Modular or Rectangular, Plug and Receptacle, Harsh Environment, Removable Termini, General Specification for

2020-12-29
AS8050
The AS8050 master document contains general information for qualification of aerospace fiber optic, circular, modular, and rectangular connectors as part of a fiber optic interconnect assembly comprising of a connector, fiber optic cable, and fiber optic terminus. The product specifications (slash sheets) contain dimensional, mechanical, and operating performance requirements for aerospace fiber optic, circular, and rectangular connectors. The product specifications (slash sheets) reference associated aerospace fiber optic termini and cables suitable for use with AS8050 connectors.
Standard

In-Service Fiber Optic Inspection, Evaluation, and Cleaning, Best Practices, Expanded Beam Termini

2020-03-18
ARP6283/1
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
Standard

Inline Optical Power Monitoring, Network End-to-End Data Link Evaluation System

2019-10-02
AIR6552/1
This document establishes methods to obtain, store, and access data about the health of a fiber optic network using commercially available inline optical power monitoring sensors. This document is intended for: Managers Engineers Technicians Contracting officers Third party maintenance agencies Quality assurance
Standard

Characterization and Requirements for New Aerospace Fiber Optic Cable Assemblies - Jumpers, End Face Geometry, Link Loss Measurement, and Inspection

2019-03-28
WIP
AS5675A
To create a standard that instructs both supplier and user in the testing and characterization of initial build fiber optic cable assemblies for avionics/aerospace applications. This can be in the plant or in the avionics “box.” It includes specification of jumpers (aerospace measurement quality jumpers), end faces, link loss requirements and inspection.
Standard

Verification of Discrete and Packaged Photonic Device Technology Readiness

2018-08-20
ARP6318
This document is intended for discrete and integrated digital, wavelength division multiplexing (WDM), and analog/radio frequency (RF) photonic components developed for eventual transition to aerospace platforms. The document provides the reasons for verification of photonic device life test and packaging durability. The document focuses on pre-qualification activity at the optical component level to achieve TRL 6. The recommended tests in this document are intended to excite typical failure mechanisms encountered with photonic devices in an aerospace operating environment, and to build confidence that a technology is qualifiable during a program’s engineering and manufacturing development phase. This recommended practice is targeting components to support electrical-to-optical, optical-to-electrical, or optical-to-optical functionality. Passive optical waveguide, fiber optic cable, and connector components that are integral to a photonic package are included.
Standard

Digital Fiber Optic Link Loss Budget Methodology for Aerospace Platforms

2018-01-23
AS5603A
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget.
Standard

Fiber Optic Cleaning

2018-01-23
AIR6031
This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production
Standard

Guidelines for Design of Digital Fiber Optic Link Loss Budget Methodology

2018-01-23
AIR6113
This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is specifically intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies. The proper application of various calculation methods is provided to determine link loss power budget(s), that depend on differing requirements on aerospace programs.
X