Refine Your Search

Search Results

Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Experimental Investigation of Pilot Injection Strategies to Aid Low Load Compression Ignition of Neat Methanol

2024-04-09
2024-01-2119
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads.
Technical Paper

Effect of Intake Conditions (Temperature, Pressure and EGR) on the Operation of a Dual-Fuel Marine Engine with Methanol

2023-08-28
2023-24-0046
In the upcoming decade sustainable powertrain technologies will seek for market entrance in the transport sector. One promising solution is the utilization of dual-fuel engines using renewable methanol ignited by a pilot diesel fuel. This approach allows the displacement of a significant portion of fossil diesel, thereby reducing greenhouse gas emissions. Additionally, this technology is, next to newbuilds, suited for retrofitting existing engines, while maintaining high efficiencies and lowering engine-out emissions. Various researchers have experimentally tested the effects of replacing diesel by methanol and have reported different boundaries for substituting diesel by methanol, including misfire, partial burn, knock and pre-ignition. However, little research has been conducted to explore ways to extend these substitution limits.
Technical Paper

Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel

2023-08-28
2023-24-0095
The worldwide adoption of renewable energy mandates, together with the widespread utilization of biofuels has created a sharp increase in the production of biodiesel (fatty acid alkyl esters). As a consequence, the production of glycerol, the main by-product of the transesterification of fatty acids, has increased accordingly, which has led to an oversupply of that compound on the markets. Therefore, in order to increase the sustainability of the biodiesel industry, alternative uses for glycerol need to be explored and the production of fuel additives is a good example of the so-called glycerol valorization. The goal of this study is therefore to evaluate the suitability of a number of glycerol-derived compounds as diesel fuel additives. Moreover, this work concerns the assessment of low-concentration blends of those glycerol derivatives with diesel fuel, which are more likely to conform to the existing fuel standards and be used in unmodified engines.
Journal Article

Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine

2023-04-11
2023-01-0392
A modern diesel engine is a reliable and efficient mean of producing power. A way to reduce harmful exhaust and greenhouse gas (GHG) emissions and secure the sources of energy is to develop technology for an efficient diesel engine operation independent of fossil fuels. Renewable diesel fuels are compatible with diesel engines without any major modifications. Rapeseed oil methyl esters (RME) and other fatty acid methyl esters (FAME) are commonly used in low level blends with diesel. Lately, hydrotreated vegetable oil (HVO) produced from vegetable oil and waste fat has found its way into the automotive market, being approved for use in diesel engines by several leading vehicle manufacturers, either in its pure form or in a mixture with the fossil diesel to improve the overall environmental footprint. There is a lack of data on how renewable fuels change the semi-volatile organic fraction of exhaust emissions.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Literature Review on Dual-Fuel Combustion Modelling

2019-09-09
2019-24-0120
In the search for low greenhouse gas propulsion, the dual fuel engine provides a solution to use low carbon fuel at diesel-like high efficiency. Also a lower emission of NOx and particles can be achieved by replacing a substantial part of the diesel fuel by for example natural gas. Limitations can be found in excessively high heat release rate (combustion-knock), and high methane emissions. These limitations are strongly influenced by operating parameters and properties of the used (bio)-gas. To find the dominant relations between fuel properties, operating parameters and the heat release rate and methane emissions, a combustion model is beneficial. Such a model can be used for optimizing the process, or can even be used in real time control. As precursor for such a model, the current state of art of dual fuel combustion modelling is investigated in this work. The focus is on high speed dual fuel engines for heavy duty and marine applications, with a varying gas/diesel ratio.
Technical Paper

A Heat Transfer Model for Low Temperature Combustion Engines

2018-09-10
2018-01-1662
Low Temperature Combustion is a technology that enables achieving both a higher efficiency and simultaneously lower emissions of NOx and particulate matter. It is a noun for combustion regimes that operate with a lean air-fuel mixture and where the combustion occurs at a low temperature, such as Homogeneous Charge Compression Ignition and Partially Premixed Combustion. In this work a new model is proposed to predict the instantaneous heat flux in engines with Low Temperature Combustion. In-cylinder heat flux measurements were used to construct this model. The new model addresses two shortcomings of the existing heat transfer models already present during motored operation: the phasing of the instantaneous heat flux and the overprediction of the heat flux during the expansion phase. This was achieved by implementing the in-cylinder turbulence in the heat transfer model. The heat transfer during the combustion was taken into account by using the turbulence generated in the burned zone.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

2017-03-28
2017-01-0515
Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

Design of a Fast Responding Start-Up Mechanism for Bi-Propellant Fueled Engine for Miniature UAV Applications

2013-09-17
2013-01-2305
In this work a new design of a liquid fuelled combustion engine is proposed for small and light weight unmanned air vehicles (<10kg and 15-200N thrust). Ethanol and gasoline were selected as the potential fuels while pressurized air and hydrogen peroxide were used as the oxidizer. The engine combines features of both a common rocket and turbojet engine. The main features of the engine are the restart ability during flight, low cost, easy manufacturability, light weight, long operation time and high durability. The main difficulties that come along with this engine are the need for proper engine cooling (long term operation) and start-up ability at atmospheric conditions. The low temperatures and injection pressures are not favorable for the fuel atomization and ignition. The paper focuses on the design on low pressure injectors and a start-up mechanism for micro UAV's without the use of a large amount of additional fueling circuits or components.
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
Technical Paper

Evaluation of a Flow-Field-Based Heat Transfer Model for Premixed Spark-Ignition Engines on Hydrogen

2013-04-08
2013-01-0225
Hydrogen-fuelled internal combustion engines are an attractive alternative to current drive trains, because a high efficiency is possible throughout the load range and only emissions of oxides of nitrogen (NOx) can be emitted. The latter is an important constraint for power and efficiency optimization. Optimizing the engine with experiments is time consuming, so thermodynamic models of the engine cycle are being developed to speed up this process. Such a model has to accurately predict the heat transfer in the engine, because it affects all optimization targets. The standard heat transfer models (Annand and Woschni) have already been cited to be inaccurate for hydrogen engines. However, little work has been devoted to the evaluation of the flow-field based heat transfer model, which is the topic of this paper. The model is evaluated with measurements that focus on the effect of the fuel, under motored and fired operation.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
X