Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Standard

Electric Vehicle Power Transfer System Using a Three-Phase Capable Coupler

2022-07-26
CURRENT
J3068_202207
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an electric vehicle using a coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the electric vehicle inlet, supply equipment connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope.
Standard

Inverter Requirements for Class Eight Trucks - Truck and Bus

2022-06-07
WIP
J2697
This SAE Recommended Practice is intended to describe the application of single-phase DC to AC inverters, and bidirectional inverter/chargers, which supply power to ac loads in Class heavy duty on-highway trucks (10K GVW). The document identifies appropriate operating performance requirements and adds some insight into inverter selection. - This document applies to factory and after-market installed DC-to-AC inverter systems (Including inverter chargers) providing up 3000 W of 120 VAC line-voltage power as a convenience for operator and passenger use. Such inverters are intended to power user loads not essential to vehicle Operation or safety (e.g., HVAC, TV, microwave ovens, battery chargers for mobile phones or laptop computers, audio equipment, etc.). - Systems incorporate the inverter itself as well as the input, output, control, and signal wiring associated with the inverter.
Standard

Circuit Breakers

2022-05-26
CURRENT
J553_202205
This SAE Standard defines the test conditions, procedures, and performance requirements for circuit breakers in ratings up to and including 200 A. The document includes automatic reset, modified reset, and manually reset types of circuit breakers for 12 VDC, 24 VDC, and 48 VDC electrical systems. Some circuit breakers may have dual voltage ratings (AC and DC); however, this document evaluates DC performance only.
Standard

Inverter Requirements for Class Eight Trucks - Truck and Bus

2020-11-18
CURRENT
J2697_202011
This SAE Recommended Practice is intended to describe the application of single-phase DC to AC inverters, and bidirectional inverter/chargers, which supply power to ac loads in Class heavy duty on-highway trucks (10K GVW). The document identifies appropriate operating performance requirements and adds some insight into inverter selection. This document applies to factory and after-market installed DC-to-AC inverter systems (Including inverter chargers) providing up 3000 W of 120 VAC line-voltage power as a convenience for operator and passenger use. Such inverters are intended to power user loads not essential to vehicle Operation or safety (e.g., HVAC, TV, microwave ovens, battery chargers for mobile phones or laptop computers, audio equipment, etc.). Systems incorporate the inverter itself as well as the input, output, control, and signal wiring associated with the inverter.
Standard

Truck Tractor Power Output for Trailer ABS

2018-05-24
HISTORICAL
J2247_201805
This SAE Recommended Practice identifies the minimum truck tractor electrical power output of the stop lamp and ABS (antilock brake system) circuits measured at the primary SAE J560 tractor trailer interface connector(s).
Standard

Positive Temperature Coefficient Overcurrent Protection Devices (PTCs)

2014-12-03
CURRENT
J2685_201412
This SAE Recommended Practice defines the test conditions, procedures, and performance requirements for PTC (positive temperature coefficient of resistance) overcurrent protection devices. PTCs are typically either polymeric (PPTC) or ceramic (CPTC). It is important to note battery voltages versus powernets/system voltage versus max battery voltages: (12 V/14 V/16 V, 24 V/28 V/32 V, and 36 V/42 V/58 V). All voltages are DC. These devices are typically rated with a maximum operating voltage, which for vehicular systems need to be 16 V (for 12 V batteries), 32 V (for 24 V batteries), and 58 V (for 36 V batteries/42 V powernets). PTC devices are considered to be self-resetting after responding to overcurrent conditions and after such condition has been removed from the affected circuit containing the PTC.
Standard

VOLTAGE DROP FOR STARTING MOTOR CIRCUITS

1996-10-01
HISTORICAL
J541_199610
The scope of this SAE Recommended Practice is to describe the maximum recommended voltage drop for starting motor circuits for 6 V through 32 V starters.
X