Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Setting Velocity on Self-Piercing Riveting Process and Joint Behaviour for Automotive Applications

2010-04-12
2010-01-0966
The increased application of lightweight materials, such as aluminium has initiated many investigations into new joining techniques for aluminium alloys. As a result, Self-piercing riveting (SPR) was introduced into the automotive industry as the major production process to join aluminium sheet body structures. Although both hydraulic and servo types of SPR equipment are used by the industry, the servo type is most commonly used in a volume production environment. This type uses stored rotational inertia to set the rivet. The initial rotational velocity of the mass dictates the setting force and hence the tool is described as velocity-controlled. A study was therefore conducted to examine the effect of setting velocity on the process including tooling and joint performance. It was found that the setting velocity would have a significant effect on tooling life. Over 80kN force could be introduced into the tooling depending on selection of the setting velocity.
Technical Paper

An Evaluation of Quality and Performance of Self-Piercing Riveted High Strength Aluminium Alloy AA6008 for Automotive Applications

2010-04-12
2010-01-0223
Reducing vehicle weight, to improve fuel efficiency and reduce greenhouse gas emissions, continues to be a key objective in the automotive industry. As a result lightweight materials, such as aluminium alloys, are used increasingly for automotive body structures. Currently, self-piercing riveting (SPR) is a major technology used by manufacturers to join aluminium body structures. However, greater demands on the technology present themselves as ever higher strength alloys are required to be joined. The paper reported here focuses on the quality and performance of joints involving AA6008T61, recently introduced for potential applications in automotive body structures. In order to explore the process boundaries, AA6008T61 was supplied with different yield strength values which were obtained through different heat treatment procedures applied by the material supplier.
X