Refine Your Search

Topic

Search Results

Technical Paper

On-Road Emissions and Fuel Consumption Testing of Heavy-Duty Vehicles via PEMS - Comparisons of Various Performance Metrics

2022-03-29
2022-01-0571
For over a decade, the EU has required in-service conformity testing of heavy-duty road vehicles. This paper briefly discusses the practical aspects of the test requirements, how they have evolved and how they compare to other precedents, such as the heavy-duty engine dynamometer-based type approval testing procedure, as well as broadly equivalent EU requirements for light duty vehicles. Emissions requirements for heavy-duty vehicles are work-specific, but based on standard test results a range of other parameters can be calculated to yield distance-specific, tonnage-distance specific, CO2-specific and (gravimetric) fuel-specific results. At present, CO2 and fuel consumption are not subject to any limits per se during on-road testing (and this is the case for both heavy and light duty vehicles); nevertheless, the aforementioned parameters must be measured and such results can be of interest for a variety of reasons.
Technical Paper

Exhaust Emissions from Two Euro 6d-Compliant Plug-In Hybrid Vehicles: Laboratory and On-Road Testing

2021-04-06
2021-01-0605
This paper discusses the legislative situation regarding type approval of plug-in hybrid vehicles (also known as off-vehicle charging hybrid-electric vehicles, OVC-HEV) in the range of exhaust emissions and fuel consumption. A range of tests were conducted on two Euro 6d-complaint OVC-HEVs to quantify emissions. Procedures were based on EU legislative requirements. For laboratory (chassis dyno) testing, two different test cycles and three different ambient temperatures were used for testing. Furthermore, in some cases additional measurements were performed, including measurement of emissions of particulate matter and continuous analysis of regulated and unregulated pollutants in undiluted exhaust. Consumption of electrical energy was also monitored. On-road testing was conducted on the test vehicle tested on the chassis dyno in the tests mentioned above, as well as on a second OVC-HEV test vehicle.
Technical Paper

Exhaust Emissions from an SUV with a Spark-Ignition Engine Tested Using EU and US Legislative Driving Cycles and EU RDE Procedures

2021-04-06
2021-01-0616
Despite an overall trend towards harmonization in vehicle regulations, regional differences persist in the area of exhaust emissions and fuel economy. The test procedure employed can exert a significant impact on the results obtained. In this paper, the EU and US type approval procedures for light duty vehicles are briefly compared and results obtained from several types of test procedure are presented. Specifically, emissions tests were performed on a single SUV which met US Tier III emissions limits. The vehicle featured a conventional, naturally aspirated spark ignition engine with indirect fuel injection and an aftertreatment system consisting of three-way catalysts with no dedicated particulate filtration device. The vehicle’s engine displacement, total mass and power-to-mass ratio were relatively representative of the upper end of the US market, but represented an outlying vehicle in terms of the characteristics of the EU fleet.
Technical Paper

Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters

2020-09-15
2020-01-2203
Particle number (PN) emission limits were introduced in the European Union’s regulations for light-duty and heavy duty vehicles in the years 2011-2014. Since then, PN measurements have become a common practice in the automotive sector. Many studies showed that the current methodology, which counts particles >23 nm, misses a large fraction of particles for some engine technologies, such as port fuel injection vehicles or vehicles fueled with compressed natural gas (CNG). However, data for the latest technology vehicles are lacking. For this reason, we measured PN emissions >23 nm and >10 nm of >30 CNG, gasoline and diesel-fueled vehicles. Two systems were measuring in parallel from the full dilution tunnel; one with an evaporation tube and the other with a catalytic stripper. The PN emission levels spanned over three orders of magnitude depending on whether there was a particulate filter installed or not.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

A Comparison of Gaseous Emissions from a Hybrid Vehicle and a Non-Hybrid Vehicle under Real Driving Conditions

2018-04-03
2018-01-1272
In this study, two vehicles were tested under real driving conditions with gaseous exhaust emissions measured using a portable emissions measurement system (PEMS). One of the vehicles featured a hybrid powertrain with a spark ignition internal combustion engine, while the other vehicle featured a non-hybrid (conventional) spark ignition internal combustion engine. Aside from differences in the powertrain, the two test vehicles were of very similar size, weight and aerodynamic profile, meaning that the power demand for a given driving trace was very similar for both vehicles. The test route covered urban conditions (but did include driving on a road with speed limit 90 km/h). The approximate test route distance was 12 km and the average speed was very close to 40 km/h.
Technical Paper

Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles

2016-04-05
2016-01-1008
Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
Technical Paper

A Comparison of Carbon Dioxide Exhaust Emissions and Fuel Consumption for Vehicles Tested over the NEDC, FTP-75 and WLTC Chassis Dynamometer Test Cycles

2015-04-14
2015-01-1065
Due to concern over emissions of greenhouse gases (GHG; particularly carbon dioxide - CO2), energy consumption and sustainability, many jurisdictions now regulate fuel consumption, fuel economy or exhaust emissions of CO2. Testing is carried out under laboratory conditions according to local or regional procedures. However, a harmonized global test procedure with its own test cycle has been created: the World Harmonized Light Vehicles Test Cycle - WLTC. In this paper, the WLTC is compared to the New European Driving Cycle (NEDC) and the FTP-75 cycle used in the USA. A series of emissions tests were conducted at BOSMAL on a chassis dynamometer in a Euro 6-complaint test facility to determine the impact of the test cycle on CO2 emissions and fuel consumption. While there are multiple differences in the test cycles in terms of dynamicity, duration, distance covered, mean/maximum speed, etc, differences in results obtained over the three test cycles were reasonably limited.
Technical Paper

Regulated Emissions, Unregulated Emissions and Fuel Consumption of Two Vehicles Tested on Various Petrol-Ethanol Blends

2014-10-13
2014-01-2824
Ethanol has a long history as an automotive fuel and is currently used in various blends and formats as a fuel for spark ignition engines in many areas of the world. The addition of ethanol to petrol has been shown to reduce certain types of emissions, but increase others. This paper presents the results of a detailed experimental program carried out under standard laboratory conditions to determine the influence of different quantities of petrol-ethanol blends (E5, E10, E25, E50 and E85) on the emission of regulated and unregulated gaseous pollutants and particulate matter. The ethanol-petrol blends were laboratory tested in two European passenger cars on a chassis dynamometer over the New European Driving Cycle, using a constant volume sampler and analyzers for quantification of both regulated and unregulated emissions.
Journal Article

The Impact of Fuel Ethanol Content on Particulate Emissions from Light-Duty Vehicles Featuring Spark Ignition Engines

2014-04-01
2014-01-1463
Ethanol has long been a fuel of considerable interest for use as an automotive fuel in spark ignition (SI) internal combustion engines. In recent years, concerns over oil supplies, sustainability and geopolitical factors have lead multiple jurisdictions to mandate the blending of ethanol into standard gasoline. The impact of blend ethanol content on gaseous emissions has been widely studied; particulate matter emissions have received somewhat less attention, despite these emissions being regulated in the USA. Currently, in the EU particulate matter emissions from SI engines are partially regulated - only vehicles featuring direct injection SI engines are subject to emissions limits. A range of experiments was conducted to determine the impact of fuel ethanol content on the emissions of solid pollutants from Euro 5 passenger cars.
Technical Paper

Chassis Dynamometer Testing of Ammonia Emissions from Light-Duty SI Vehicles in the Context of Emissions of Reactive Nitrogen Compounds

2013-04-08
2013-01-1346
Ammonia is a reactive nitrogen compound (RNC - nitrogen-based gaseous molecules with multiple adverse impacts on human health and the biosphere). A three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. This study presents a brief literature review, and presents experimental data on ammonia emissions from seven Euro 5 passenger cars, using different gasoline fuels and a CNG fuel. All vehicles were tested on a chassis dynamometer over the New European Driving Cycle. For six of the vehicles, ammonia was quantified directly at tailpipe (using two different analyzers); emissions from one vehicle were subjected to Fourier Transform Infra-Red (FTIR) analysis. Emissions of ammonia from these vehicles were generally low in comparison to other chassis dynamometer studies, perhaps attributable to the favorable laboratory test conditions and the age of the vehicles.
Journal Article

A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG)

2012-04-16
2012-01-1095
Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Ammonia emissions represent a serious threat to air quality, particularly in urban settings; an ammonia emissions limit may be introduced in future legislation. Production of ammonia within the cylinder has long been known to be very limited. However, having reached its light-off temperature, a three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. Production of ammonia is symptomatic of overly reducing conditions within the three-way catalyst (TWC), and depends somewhat upon the particular precious metals used. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions.
Technical Paper

Excess Emissions and Fuel Consumption of Modern Spark Ignition Passenger Cars at Low Ambient Temperatures

2012-04-16
2012-01-1070
Cold starts are demanding events for spark-ignition (SI) internal combustion engines. When the temperatures of the engine oil, coolant and the engine block are close to the ambient temperature, start-up can be difficult to achieve without fuel enrichment, which results in significant excesses in exhaust emissions and fuel consumption. In general, the lower the ambient temperature, the more substantial these problems are. Many nations frequently experience sub-zero ambient temperatures, and the European Union (among others) has specified an emissions test at low ambient temperature (-7°C). Passenger cars typically experience one to two cold start events per day, and so both cold starts and the warm-up period that follows are significant in terms of exhaust emissions. This paper examines emissions at low ambient temperatures with a special focus on cold start; emissions are also compared to start-up at a higher ambient temperature (24°C).
Technical Paper

A Study of Gasoline-Ethanol Blends Influence on Performance and Exhaust Emissions from a Light-Duty Gasoline Engine

2012-04-16
2012-01-1052
This paper evaluates the possibility of using bioethanol blends (mixtures of gasoline fuel and ethanol derived from biomass) of varying strengths in an unmodified, small-displacement European Euro 5 light-duty gasoline vehicle. The influence of different proportions of bioethanol in the fuel blend (E5, E10, E25, E50 and E85) on the emission of gaseous pollutants, such as: carbon monoxide, hydrocarbons, oxides of nitrogen and carbon dioxide was tested at normal (22°C) and low (-7°C) ambient temperatures for a light-duty vehicle during the NEDC cycle on a chassis dynamometer. Engine performance metrics were also tested. All test results are presented in comparison to standard European gasoline (E5). Tailpipe emission data presented here suggest that modest improvements in air quality could result from usage of low-to-mid ethanol blends in the vehicle tested.
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

2011-09-11
2011-24-0177
Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Technical Paper

The Comparison of the Emissions from Light Duty Vehicle in On-road and NEDC Tests

2010-04-12
2010-01-1298
The investigations into the emissions from light-duty vehicles have been carried out on a chassis dynamometer (NEDC test in Europe and FTP75 test in the US). Such tests do not entirely reflect the real road conditions and that is why we should analyze the correlation of the laboratory versus on-road test results. The paper presents the on-road test results obtained in an urban and extra urban cycles. For these measurements a portable SEMTECH DS analyzer by SENSORS has been used. The device is an analyzer enabling an on-line measurement of the emission gases concentration in a real driving cycle under real road conditions. The road tests were performed on road portions of several kilometers each. The obtained results were compared with the results obtained for the same vehicle during the NEDC test on a chassis dynamometer. The comparative analysis was performed including the urban and extra-urban cycles.
Technical Paper

The Effect of Pure RME and Biodiesel Blends with High RME Content on Exhaust Emissions from a Light Duty Diesel Engine

2009-11-02
2009-01-2653
The use of biofuels (biodiesel and gasoline-alcohol blends) in vehicle powertrains has grown in recent years in European Union, the United States, Japan, India, Brazil and many other countries due to limited fossil fuel sources and necessary reduction of anthropogenic CO2 emissions. European car manufacturers have approved up to 5 percent of biodiesel blend in diesel fuel (B5 biodiesel blend) which meets European fuel standards EN 14214 and EN 590. The goal for research is to achieve higher biodiesel content in diesel fuel B10 and B20, without resorting to larger diesel engines and fuel feed system modernization. This paper evaluates the possibility of using higher FAME content in biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4 vehicle with direct-injection, common-rail and turbocharged light-duty diesel engine with standard engine ECU calibration and standard injection equipment (not tuned for biodiesel).
Technical Paper

The Influence of Oxygenated Diesel Fuels on a Diesel Vehicle PM/NOx Emission Trade-Off

2009-11-02
2009-01-2696
Research on the influence of oxygenated diesel fuels on the PM/NOx emission trade-off was carried out with use of 11 different synthetic oxygenated compounds, representing 3 chemical groups (glycol ethers, maleates, carbonates). Each of oxygenates were evaluated as a fuel additive at a concentration of 5% v/v in the same base diesel fuel. The tests were conducted on a passenger car equipped with a common rail turbocharged diesel engine over the European cycle NEDC and US FTP-75 cycle. All the tested oxygenates caused a reduction in PM emissions and most of them caused a certain increase in NOx emissions. The changes in emissions depended on the oxygenate type and cycle. In general, the favorable and unfavorable influence of oxygenated compounds was more intensive during the NEDC, which is a softer and less transient cycle than the FTP-75. The most favorable changes in the PM/NOx emission trade-off were obtained for maleates and carbonates.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 2

2008-06-23
2008-01-1813
The paper presents the test results of the influence of maleate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069), the authors decided to use maleates as oxygenates to obtain greater changes in PM/NOx trade-off than the changes obtained as a result of the use of glycol ethers. It was found that in the NEDC maleates at the same concentration as in the case of glycol ethers ensure more favourable changes of PM/NOx trade-off and, as a matter of fact, caused greater reduction in PM emissions without the growth of NOx emissions, however, at the cost of CO and HC emissions. The tests performed in the FTP-75 confirmed a significantly weaker influence of maleates, both positive (PM) and negative (CO, HC) than in the NEDC. They did not find in both cycles any influence of maleates at the tested concentration upon fuel consumption and CO2 emissions.
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

2008-04-14
2008-01-1398
The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
X