Refine Your Search

Topic

Search Results

Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2017-09-05
CURRENT
ARP4014A
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Standard

Environmental Control Systems Terminology

2017-06-20
CURRENT
ARP147E
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Standard

Thermophysical Characteristics of Working Fluids and Heat Transfer Fluids

2017-05-19
CURRENT
AIR1168/10A
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

Environmental Control Systems Life Cycle Cost

2017-02-07
CURRENT
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2016-08-11
CURRENT
AIR1826A
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

Aircraft Humidification

2015-11-09
HISTORICAL
AIR1609A
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2012-12-06
HISTORICAL
ARP4014
This recommended practice describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of this test fluid is not part of this recommended practice, however, if required by applicable test specification, refer to MAP 749A.
Standard

ENVIRONMENTAL CONTROL SYSTEM TRANSIENT ANALYSIS COMPUTER PROGRAM (EASY)

2011-08-10
HISTORICAL
AIR1823
The Environmental Control Analysis SYstem (EASY) computer program is summarized in this report. Development of this computer program initially was sponsored by the U.S. Air Force Flight Dynamics Laboratory. (See References 1, 2, 3, and 4.) It provides techniques for determination of steady state and dynamic (transient) ECS performance, and of control system stability; and for synthesis of optimal ECS control systems. The program is available from the U.S. Air Force, or as a proprietary commercial version. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

Aerospace Vehicle Cryogenic Duct Systems

2011-08-10
CURRENT
ARP735A
This Aerospace Recommended Practice outlines the design, installation, testing and field maintenance criteria for aerospace vehicle cryogenic duct systems. These recommendations are considered currently applicable guides and are subject to revision due to the continuing development within industry.
Standard

Spacecraft Thermal Balance

2011-07-25
CURRENT
AIR1168/12A
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Aerospace Pressurization System Design

2011-07-25
CURRENT
AIR1168/7A
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

THERMOPHYSICAL CHARACTERISTICS OF WORKING FLUIDS AND HEAT TRANSFER FLUIDS

2011-06-21
HISTORICAL
AIR1168/10
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
X