Refine Your Search

Search Results

Technical Paper

Experimental Study on Bendability of Advanced High Strength Steels

2024-04-09
2024-01-2860
Fracturing in a tight radius during bending is one of the major manufacturing issues in forming Advanced High Strength Steels (AHSS). The study investigated the bendability of AHSS under two forming conditions: bending with and without stretched over the die radius. The bendability was evaluated by conducting modified Bending Under Tension (BUT) test for stretch bending and 90o v bend test for bending without stretch. The study also examined the effect of material properties on the limiting bend ratio. Various strength high strength steels, range from 420 MPa to 1700 MPa tensile strength, were selected in the study. Results indicated that critical radius-to-thickness ratios between the two tests are different but correlated in a relationship which was depicted in the bendability diagram.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Zebra Line Laser Heat Treated Die Development

2020-04-14
2020-01-0756
The thermal deflection associated with the conventional die heat treating procedure usually requires extra die grinding process to fine-tune the die surface. Due to the size of the production die, the grinding is time consuming and is not cost effective. The goal of the study is to develop a new die heat treating process utilizing the flexible laser heat treatment, which could serve the same purpose as the conventional die heat treating and avoid the thermal deflection. The unique look of the developed zebra pattern laser heat treating process is defined as the Zebra Line. The heat-treating parameters and processes were developed and calibrated to produce the laser heat treating on laboratory size dies, which were subjected to the die wear test in the laboratory condition. The USS HDGI 980 XG3TM steel was selected to be carried out on the developmental dies in the cyclic bend die wear test due to its high strength and coating characteristic.
Journal Article

Effects of Nitrided and Chrome Plated Die Surface Roughness on Friction in Bending Under Tension

2019-04-02
2019-01-1093
Different die surface polish conditions result in a noticeable effect on material flow in stamping, which can lead to splitting, wrinkling, or other surface stretching issues associated with different friction conditions. These occurrences are not only limited to the non-coated dies, but also nitrided and chrome plated dies. To ensure quality control of the stamped parts, the die conditions corresponding to different polishing procedures need to be developed based on measurable parameters such as surface roughness (Ra). The intent of this study is to investigate the effects of nitrided and chrome plated die surface roughness on friction. The Bending-Under-Tension (BUT) test was conducted to simulate the stamping process due to the test’s versatility and flexibility in changing test parameters. The test involves moving sheet metal across a 3/8-inch diameter pin, which substitutes for a die surface. The pin can be modified by material, heat treatment, coating, and surface roughness.
Technical Paper

Effects of AHSS Sheared Edge Conditions on Crash Energy Absorption in Component Bend Test

2018-04-03
2018-01-0113
Edge fracture of advanced high strength steels (AHSS) can occur in both the stamping process and the crash event. Fracture due to poor sheared edge conditions in the stamping process was reduced with a recently developed optimal shearing process for AHSS. Currently, the improvement in the energy absorption due to the improved edge condition during crashes performed under different loading conditions had not been closely verified. The purpose of this study is to design and build a miniature component of AHSS and a three-point bending test for investigating the influence of various conditions of the sheared edge on the energy absorption in crashes. AHSS including DP600, TRIP780, DP980 and DP1180 were selected in the study. A small channel component was developed and fabricated using DP980 to simulate key features of the B-pillar. The exposed non-constrained, as-sheared edge was subject to stretch bending forces in three-dimensional space during the three-point bending test.
Technical Paper

Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS)

2018-04-03
2018-01-0626
Practical evaluation and reduction of edge cracking are two challenging issues in stamping AHSS for automotive body structures. In this paper, the effects of the shear clearance and shear rake angle on edge cracking were investigated with three different grades of AHSS; TRIP780, DP 980, and DP 1180. Five different shear clearances, between 5% and 25% of material thickness, were applied to the flexible shearing machine to generate samples for the half specimen dome test (HSDT). The shear loads and the shear edge quality were thoroughly characterized and compared. The HSDT created the edge forming limits as compared to the base material forming limit diagram. The load-displacement curve was acquired by the load-cell and the strain distribution was measured using a digital image correlation (DIC) system during the dome test.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Journal Article

Effects of Punch Configuration on the AHSS Edge Stretchability

2017-03-28
2017-01-1705
The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels. The stretchability of the as-sheared edge inside the hole can be influenced by the material property, die condition and processing parameters.
Journal Article

Friction and Die Wear in Stamping Prephospated Advanced High Strength Steels

2016-04-05
2016-01-0356
Prephosphated steels have been developed by applying the phosphate coating on zinc coated sheet steels to increase the lubricity in the automotive stamping process and adding extra corrosion protection. The prephosphate coating was also found to be able to further absorb the lubricant, which can reduce the oil migration and excessive amount of lubricant dripping on the die surface and the press floor. Due to its enhanced lubricity characteristic, the applications have been expanded to more-recently developed advanced high strength steels (AHSS). Because of the higher strength of AHSS, it is crucial to understand their performance under more extreme forming conditions such as higher die temperature, contact pressure and sliding speed, etc. The intent of this study is to investigate the tribological performance and die wear behavior of prephosphated AHSS in the die tryout and production conditions.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Optimal Production Trimming Process for AHSS Sheared Edge Stretchability Improvement

2014-04-01
2014-01-0994
Edge fracture is one of the major issues for stamping Advanced High Strength Steel (AHSS). Recent studies have showed this type of fracture is greatly affected by an improper trimming process. The current production trimming process used for the conventional mild steels has not been modified for AHSS trimming. In addition to the high-energy requirement, the current mechanical trimming process would generate a rough edge (burr) with microcracks in trimmed edges for AHSS trimming, which could serve as the crack initiation during forming. The purpose of this study is to develop a proper production trimming process for AHSS and elucidate the effect of the trimmed edge conditions on edge fracture. A straight edge shearing device with the capability of adjusting the shearing variables is used in this study.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Journal Article

Durability of Advanced High Strength Steel Gas Metal Arc Welds

2009-04-20
2009-01-0257
In this study fatigue tests of GMAW (Gas Metal Arc Welding) welded joints were conducted on both 1.6mm body sheet (DQSK-GA, DP590-GA, DP780-GI, and TRIP 780-GI) and 3.4mm frame materials (SAE1008 HR 240MPa, HSLA420 HR, DP600 HR, and uncoated Boron). Further, mixed thickness joints were tested which combined 3.4mm SAE1008 HR with each of the 1.6mm separately – with the exception of DQSK. A number of different joint configurations were tested including single and double lap-shear, start-stop lap shear, butt weld, and perch mount. Great care was taken in this study to ensure that the geometry of the welds was consistent, not only within a given material lay-up, but between all of the specimens of a given type – this effort was made in order to substantially reduce life scatter and provide a better understanding of the role base material plays in the fatigue life of GMAW joints.
X