Refine Your Search

Search Results

Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

2012-10-22
2012-01-2180
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

Facilitating the Energy Optimization of Aircraft Propulsion and Thermal Management Systems through Integrated Modeling and Simulation

2010-11-02
2010-01-1787
An integrated, multidisciplinary environment of a tactical aircraft platform has been created by leveraging the powerful capabilities of both MATLAB/Simulink and Numerical Propulsion System Simulation (NPSS). The overall simulation includes propulsion, power, and thermal management subsystem models, which are integrated together and linked to an air vehicle model and mission profile. The model has the capability of tracking temperatures and performance metrics and subsequently controlling characteristics of the propulsion and thermal management subsystems. The integrated model enables system-level trade studies involving the optimization of engine bleed and power extraction and thermal management requirements to be conducted. The simulation can also be used to examine future technologies and advanced thermal management architectures in order to increase mission capability and performance.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
Technical Paper

Conceptual Design of Current Technology and Advanced Concepts for an Efficient Multi-Mach Aircraft

2005-10-03
2005-01-3399
A design process is formulated and implemented for the taxonomy selection and system-level optimization of an Efficient Multi-Mach Aircraft Current Technology Concept and an Advanced Concept. Concept space exploration of taxonomy alternatives is performed with multi-objective genetic algorithms and a Powell’s method scheme for vehicle optimization in a multidisciplinary modeling and simulation environment. A dynamic sensitivity visualization analysis tool is generated for the Advanced Concept with response surface equations.
Technical Paper

Technology Portfolio Assessments Using a Multi-Objective Genetic Algorithm

2004-11-02
2004-01-3144
This paper discusses the use of a Multi-Objective Genetic Algorithm to optimize a technology portfolio for a commercial transport. When incorporating technologies into a conceptual design, there are often multiple competing objectives that determine the benefits and costs of a certain portfolio. The set of designs that achieves the best values of these objectives will fall along a Pareto front that outlines the tradeoffs which will give the optimal design. Multi-Objective Genetic Algorithms determine the Pareto set by giving higher priority to dominant portfolios in the evolutionary optimization techniques of selection and reproduction. When determining the final Pareto optimal set it is important to ensure that only compatible portfolios of technologies are present.
Technical Paper

Methodology for the Conceptual Design Process of Morphing Configurations

2004-11-02
2004-01-3127
Traditional historical-data based design processes are clearly inappropriate for morphing vehicles. There are no historical data for these type of configurations, the appropriate mission for this class of vehicles is unknown, and there are many unique aspects of a morphing vehicle that are dependent on the specific concept chosen. The design process proposed in this paper attempts to account for these difficulties in a flexible and transparent manner while leveraging existing tools and processes wherever possible.
Technical Paper

Bi-level Integrated System Synthesis: A Proposed Application to Aeroelastic Constraint Analysis in a Conceptual Design Environment

2003-09-08
2003-01-3060
The projection of aeroelastic constraints in the design space has long been a want in the design process of vehicles. These properties are usually not established accurately until later phases of design. The desire is to bring another interactive constraint to the conceptual design phase and allow the designer to see the impact of design decisions on aeroelastic characteristics. Even though a number of analysis and optimization tools have been developed to support aeroelastic analysis and optimization in the flight vehicle design process, the toolbox is far from being complete. The results often cannot be obtained in a manner timely enough and the natural division of the engineering team into specialty groups is not supported very well by the aerodynamic-structures monolithic codes typically in the above toolbox. The monolithic codes are also not amenable to the use of concurrent processing now made available by computer technology.
Technical Paper

Aerospace Systems Design: Economics as a New Way of Thinking?

2003-09-08
2003-01-3058
One of the major impetuses for the development of modern, robust design methodologies is the need for affordable aerospace systems. Because the affordability of a system is directly tied to the economics of developing, manufacturing, operating, and disposing of that system, it has become common practice to perform an economic analysis of a potential system to evaluate its viability. Additionally, as needs for improved modeling, analysis, and evaluation capability have arisen, several techniques which have proved themselves popular in economics have been adopted. While adopting these techniques has improved the capabilities of the designer/engineer, they do not proceed far enough. That is aerospace systems design, and consequently all complex systems design, could actually be considered an exercise in economics. All of the players, i.e. designers, firms, end users, and the systems themselves can be considered microeconomic entities.
Technical Paper

Formulation of an Integrating Framework for Conceptual Object-Oriented Systems Design

2003-09-08
2003-01-3053
In this paper, a brief overview is given of the different alternatives to an integrating computational framework. A new framework will be introduced, which incorporates the latest computational techniques and more importantly a mind-set emphasizing flexibility, modularity, portability and re-usability. This introduction will include a thorough review of the fundamental design decisions that went into developing this new integrated computational framework. Distributed object computing extends an object-oriented system which allows objects to interact across heterogenous networks and interoperate as a unified whole. Integrated computing frameworks are discussed, together with data transport techniques such as Extensible Markup Language (XML) and Simple Object Access Protocol (SOAP) to achieve platform, code and meta-model independent integration.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

Development of an Object Oriented Vehicle Library for Automated Design Analysis

2001-09-11
2001-01-3034
In today’s emerging parametric and probabilistic design environments, disciplinary or multidisciplinary analysis data are represented efficiently with the use of metamodels. Each metamodel is an efficient replacement for a particular design analysis tool. An object oriented library is developed in this paper to represent vehicle configuration in a generic manner and assist the analysis data collection for the metamodeling process. The library is used to produce input files for design analysis tools. It can also be used to create preprocessors for integration environments used in the design process. This allows for smoother integrations of analysis programs within such environments as the environment now needs only replace data in one central input file rather than a file for each analysis tool.
Technical Paper

An Improved Procedure for Prediction of Drag Polars of a Joined Wing Concept Using Physics-Based Response Surface Methodology

2001-09-11
2001-01-3015
Creation and utilization of accurate drag polars is essential in the aircraft sizing and synthesis process. Existing sizing and synthesis codes are based on historical data and cannot capture the aerodynamics of a non-conventional aircraft at the conceptual design phase. The fidelity of the aerodynamic analysis should be enhanced to increase the designer’s confidence in the results. Hence, there is need for a physics-based approach to generate the drag polars of an aircraft lying outside the conventional realm. The deficiencies of the legacy codes should be removed and replaced with higher fidelity meta-model representations. This is facilitated with response surface methodology (RSM), which is a mathematical and statistical technique that is suited for the modeling and analysis of problems in which the responses, the drag coefficients in this case, are influenced by several variables. The geometric input variables are chosen so that they represent a multitude of configurations.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

2000-10-10
2000-01-5559
The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

An Automated Robust Process for Physics Based Aerodynamic Prediction

2000-10-10
2000-01-5565
By Combining the Response Surface Methodology with a classical Design of Experiments formulation, a robust method was developed to facilitate the aerodynamic analysis of conceptual designs. These aerodynamic predictions, presented in a parametric form, can then be furnished to a sizing and synthesis code for further evaluation of the concept at the system level. The computational basis of this methodology is a set of numerical codes that work in unison to both optimize the geometry for minimal drag and evaluate key aerodynamic parameters such as lift, friction, wave and induced drag coefficients. Code fidelity and sensitivity to a wide variety of input parameters such as aircraft geometry, panel layout, number of panels used, flow theory used within the numerical code, etc. was investigated. The numerical results were compared with experimental data for different configurations, and the code input parameters required for the best correlation were grouped according to aircraft type.
Technical Paper

An Improved Process for the Generation of Drag Polars for use in Conceptual/Preliminary Design

1999-10-19
1999-01-5641
One of the most essential contributors in the aircraft sizing and synthesis process is the creation and utilization of accurate drag polars. An improved general procedure to generate drag polars for conceptual and preliminary design purposes in the form of Response Surface Equations is outlined and discussed in this paper. This approach facilitates and supports aerospace system design studies as well as Multi-disciplinary Analysis and Optimization. The analytically created Response Surface Equations replace the empirical aerodynamic relations or historical data found in sizing and synthesis codes, such as the Flight Optimization System (FLOPS). These equations are commonly incorporated into system level studies when a configuration falls beyond the conventional realm. The approach described here is a statistics-based methodology, which combines the use of Design of Experiments and Response Surface Method (RSM).
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
X