Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimization of a Sliding Rotary Vane Pump for Heavy Duty Internal Combustion Engine cooling

2024-06-12
2024-37-0030
The benefits introduced by the replacement of conventional centrifugal pumps with volumetric machines for Internal Combustion Engines (ICEs) cooling were experimentally and theoretically proven in literature. In particular, Sliding Rotary Vane Pumps (SVRPs) ensure to achieve an interesting reduction of ICEs fuel consumption and CO2 emissions. Despite volumetric pumps are a reference technology for ICE lubrication oil circuits, the application in ICE cooling systems still not represent a ready-to-market solution. Particularly challenging is the case of Heavy-Duty ICE due to the wide operating range the pump covers in terms of flow rate delivered. Generally, SVRPs are designed to operate at high speeds to reduce machine dimensions and, consequently, the weight. Nevertheless, speed increase could lead to a severe penalization of pump performance since the growth of the friction losses.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

The Hybrid Friction Surfacing Deposition Assisted Arc Welding (FsaAW) Approach for Dissimilar Steel/Al Joining of Automobile Structure

2024-04-09
2024-01-2072
A multi-material design strategy of steel and aluminium alloy is a key solution in response to stringent emission requirements and to offset the additional weight of batteries in electric vehicles. However, dissimilar Al/steel welding is mainly challenging due to the formation of brittle and hard intermetallic compounds (IMC). In order to resolve the issue of IMC formation, the present study proposed an alternative manufacturing method consisting of friction surfacing deposition and arc welding. The proposed method involves two steps for dissimilar welding: step 1, friction surfacing deposition of aluminium alloy on the steel surface and step 2, arc welding of friction surfacing deposited steel and aluminium alloy.
Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Technical Paper

Advanced Aftertreatment System Meeting Future HD CNVII Legislation

2024-04-09
2024-01-2379
Options for CNVII emission legislation are being widely investigated in a national program organized by China Vehicle Emission Control Center (VECC) since early 2020. It is foreseen that this possibly last legislation in China will have more stringent emission requirements compared to CNVI, including among other changes especially a further reduction of nitrogen oxide (NOx), inclusion of nitrous oxide (N2O) and sub-23 nm particle number (PN). This study investigates the technical feasibility to fulfill a CNVII emission legislation scenario, based on a modified CNVI 8 L engine operating under both cold and hot World Harmonized Transient Cycle (WHTC) and Low Load Cycle (LLC).
Standard

Nickel Wire and Ribbon 99Ni

2024-04-01
CURRENT
AMS5555G
This specification covers a nickel in the form of round wire and rectangular ribbon.
X