Refine Your Search

Topic

Search Results

Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

A Computational Study of the Lubricant Transport into Oil Control Ring Groove

2019-12-19
2019-01-2362
Lubricant transport into an oil control ring (OCR) groove through the clearance between the lower flank of the OCR and the groove was studied. A primary driving force of such lubricant transport is a dynamic pressure on the outer end of the clearance. The magnitude of the pressure depends on the flow pattern in the skirt chamfer region. Computational Fluid Dynamics (CFD) was employed to simulate the multiphase flow involving lubricant and gas in a skirt chamfer region. A correlation to predict the dynamic pressure was proposed and validated. The amount of lubricant transport into an OCR groove was found remarkable in a high-speed full-load condition.
Technical Paper

Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems

2019-12-19
2019-01-2364
In internal combustion engines, the majority of the friction loss associated with the piston takes place on the thrust side in early expansion stroke. Research has shown that the Friction Mean Effective Pressure (FMEP) of the engine can be reduced if proper modifications to the piston skirt, which is traditionally barrel-shaped, are made. In this research, an existing model was applied for the first time to study the effects of different oil supply strategies for the piston assembly. The model is capable of tracking lubricating oil with the consideration of oil film separation from full film to partial film. It is then used to analyze how the optimized piston skirt profile investigated in a previous study reduces friction.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Working Engine Conditions Study

2018-04-03
2018-01-1277
A new multi-scale curved beam based model was developed for piston-ring designs. This tool is able to characterize the behavior of a ring with any cross section design. This paper describes the conformability and ring static twist calculation. The conformability part model the static behavior of the ring in working engine conditions. The model employs the computation scheme that separates the meshing of the structure and local force generation. Additional to the conventional static ring-bore conformability analysis, the conformability model is designed to examine ring-bore and ring-groove interactions in a running engine under varying driving forces and localized lubrication conditions. We made Improvements on the way to handle the effects of the radial temperature gradient compared to the existing models. Examples are given on the effects of ring rotation on the interaction of the ring and a distorted bore as well as the change of local lubrication conditions.
Technical Paper

Curved Beam Based Model for Piston-Ring Designs in Internal Combustion Engines: Closed Shape Within a Flexible Band, Free-Shape and Force in Circular Bore Study

2018-04-03
2018-01-1279
A new multi-scale curved beam based model was developed for piston-ring designs. This paper describes the free-shape, force in circular bore and closed shape within a flexible band (ovality) related parts. Knowing any one of these distributions, this model determines the other two. This tool is useful in the sense that the characterization of the ring is carried out by measuring its closed shape within a flexible band which is more accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that takes the closed shape within a flexible band as an input is more convenient and useful based on the experiments carried out to characterize the ring.
Journal Article

A Study of the Friction of Oil Control Rings Using the Floating Liner Engine

2016-04-05
2016-01-1048
The oil control ring (OCR) controls the supply of lubricating oil to the top two rings of the piston ring pack and has a significant contribution to friction of the system. This study investigates the two most prevalent types of OCR in the automotive market: the twin land oil control ring (TLOCR) and three piece oil control ring (TPOCR). First, the basis for TLOCR friction on varying liner roughness is established. Then the effect of changing the land width and spring tension on different liner surfaces for the TLOCR is investigated, and distinct trends are identified. A comparison is then done between the TLOCR and TPOCR on different liner surfaces. Results showed the TPOCR displayed different patterns of friction compared the TLOCR in certain cases.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results

2009-04-20
2009-01-1086
Ash, mostly from essential lubricant additives, affects diesel particulate filter (DPF) pressure-drop sensitivity and limits filter service life. It raises concern in the lubricant industry to properly specify new oils, and engine and aftertreatment system manufacturers have attempted to find ways to mitigate the problem. To address these issues, results of detailed measurements of ash characteristics in the DPF and their effects on filter performance are presented. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous studies, this system allows for the control of specific exhaust characteristics including ash emission rate, ash-to-particle ratio, ash composition, and exhaust temperature and flow rates independent of the engine operating condition.
Journal Article

A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation

2008-06-23
2008-01-1549
The challenge posed by the long run times necessary to accurately quantify ash effects on diesel aftertreatment systems has led to numerous efforts to artificially accelerate ash loading, with varying degrees of success. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous attempts, the proposed methodology utilizes a series of thermal reactors and combustors to simulate all three major oil consumption mechanisms, namely combustion in the power cylinder, evaporative and volatile losses, and liquid losses through the valve and turbocharger seals. In order to simulate these processes, each thermal reactor allows for the precise control of the level of lubricant additive degradation, as well as the form and quantity of degradation products introduced into the exhaust upstream of the aftertreatment system.
Technical Paper

A Simplified Piston Secondary Motion Model Considering the Dynamic and Static Deformation of Piston Skirt and Cylinder Bore in Internal Combustion Engines

2008-06-23
2008-01-1612
A dry piston secondary dynamics model has been developed. This model includes the detailed piston and cylinder bore hot shape geometries, and piston deformations due to combustion pressure, axial inertia and interaction with the cylinder bore, but neglects the effects of the hydrodynamic lubrication at the piston - cylinder bore interface in order to achieve faster calculation times. The piston - cylinder bore friction is calculated using a user supplied friction coefficient. This model provides a very useful, fast tool for power cylinder system analysis, provided its limitations are understood.
Technical Paper

A Deterministic Model for Lubricant Transport within Complex Geometry under Sliding Contact and its Application in the Interaction between the Oil Control Ring and Rough Liner in Internal Combustion Engines

2008-06-23
2008-01-1615
A general deterministic hydrodynamic lubrication model [1] was modified to study the interaction between a Twin Land Oil Control Ring (TLOCR) and a liner with cross-hatch liner finish. Efforts were made to customize the general model to simulate the particular sliding condition of TLOCR/liner interaction with proper boundary conditions. The results show that model is consistent, robust, and efficient. The lubricant mass conservation was justified and discussed. Then analysis was conducted on the lubricant transport between the deep grooves/valleys and plateau part of the surface to illustrate the importance of deep grooves in oil supply to the plateau part and hydrodynamic pressure generation. Furthermore, since the TLOCR land running surface is completely flat and parallel to the nominal liner axis, the liner finish micro geometry is fully responsible for the hydrodynamic pressure rise, which was found to be sufficient to support significant portion of the total ring radial load.
Journal Article

Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear: Comparison with Conventional Diesel Fuel

2008-04-14
2008-01-1395
The increased use of biodiesel fuels has raised concerns over the fuel's impact on engine performance and hardware compatibility. While these issues have received much attention in recent years, less well-known are the effects of biodiesel on engine-out ash emissions and lubricant properties. Significant differences in composition between biodiesel and petroleum diesel fuels have the potential to influence ash emissions, thereby affecting aftertreatment system performance. Further, the fuel also interacts directly with the lubricant through fuel dilution, and may impact lubricant properties. In this study, a 5.9L, 6 cylinder, Cummins ISB 300 diesel engine was outfitted with a specially designed rapid lubricant aging system and subjected to a set of steady-state engine operating conditions. The lubricant aging system allows for the investigation of the interactions of emissions and combustion products, as well as fuel dilution, on lubricant properties in an accelerated manner.
X