Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Gas Turbine Engine Real Time Performance Model Presentation

2020-08-17
CURRENT
ARP4148C
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use. Models used in this application may also be contained in deliverable computer programs covered by AS681.
Standard

Gas Turbine Engine Performance Presentation and Nomenclature For Object-Oriented Computer Programs

2018-05-07
CURRENT
ARP5571C
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard

Gas Turbine Engine Performance Presentation and Nomenclature For Object-Oriented Computer Programs

2013-10-04
HISTORICAL
ARP5571B
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard

Gas Turbine Engine Performance Presentation and Nomenclature For Object-Oriented Computer Programs

2008-12-17
HISTORICAL
ARP5571A
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard

Gas Turbine Engine Performance Presentation and Nomenclature for Digital Computers Using Object-Oriented Programming

2005-01-11
HISTORICAL
ARP5571
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available, production system. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard

Gas Turbine Engine Steady-State and Transient Performance Presentation for Digital Computer Programs

1999-03-01
HISTORICAL
AS681H
This Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using digital computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight and dimensions computed by digital computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier.
Standard

GAS TURBINE ENGINE REAL TIME PERFORMANCE MODEL PRESENTATION FOR DIGITAL COMPUTERS

1993-03-01
HISTORICAL
ARP4148
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as digital computer programs operating in real time and is intended to complement ARP1257 and AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of ARP1257. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use.
X