Refine Your Search

Topic

Search Results

Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-related Injury Risk

2015-11-09
2015-22-0014
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Journal Article

Distribution of Belt Anchorage Locations in the Second Row of Passenger Cars and Light Trucks

2013-04-08
2013-01-1157
Seat belt anchorage locations have a strong effect on occupant protection. Federal Motor Vehicle Safety Standard (FMVSS) 210 specifies requirements for the layout of the anchorages relative to the seating reference point and seat back angle established by the SAE J826 H-point manikin. Sled testing and computational simulation has established that belt anchorage locations have a strong effect on occupant kinematics, particularly for child occupants using the belt as their primary restraint. As part of a larger study of vehicle geometry, the locations of the anchorage points in the second-row, outboard seating positions of 83 passenger cars and light trucks with a median model year of 2005 were measured. The lower anchorage locations spanned the entire range of lap belt angles permissible under FMVSS 210 and the upper anchorages (D-ring locations) were distributed widely as well.
Journal Article

An Eyellipse for Rear Seats with Fixed Seat Back Angles

2011-04-12
2011-01-0596
This paper describes the development of the fixed seat eyellipse in the October 2008 revision of SAE Recommended Practice J941. The eye locations of 23 men and women with a wide range of stature were recorded as they sat in each of three second-row bench seats in a laboratory mockup. Testing was conducted at 19-, 23-, and 27-degree seat back angles. Regression analysis demonstrated that passenger eye location was significantly affected by stature and by seat back angle. The regression results were used to develop an elliptical approximation of the distribution of adult passenger eye locations, applying a methodology previously used to develop the driver eyellipse in SAE J941-2002.
Technical Paper

Dynamic Performance of Child Restraints with Two-Point Belt Securement

2009-10-06
2009-36-0183
Three different models of forward-facing CRS were evaluated dynamically using a two-point belt fixation (FMVSS 213 Standard). Ann additional test was conducted with one same model of CRS but using the three-point belt fixation. Results showed that CRS performance differ strongly according to belt fixation being the two-point belt securement dangerously inefficient for children transportation safety.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Improved Positioning Procedures for 6YO and 10YO ATDs Based on Child Occupant Postures

2006-11-06
2006-22-0014
The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children.
Technical Paper

Comparison of Child Body Dimensions with Rear Seat Geometry

2006-04-03
2006-01-1142
Children who are too large for harness restraints but too small to obtain good restraint from a vehicle seatbelt alone should be seated in a belt-positioning booster. Boosters have been shown to significantly reduce abdominal injuries caused by seatbelts. This effectiveness may be due in part to the fact that boosters reduce the effective seat cushion length, allowing children to sit more comfortably without slouching. NHTSA recommends that children who do not use harness restraints use boosters until they are at least 145 cm tall. In this paper, data from several sources were combined to assess how well children fit on rear seat cushions. Data from NASS-GES were analyzed to determine the age distribution of rear-seat occupants. Anthropometric data from several sources were analyzed to determine the distribution of buttock-popliteal length, a measure of thigh length that is a key determinant of seat fit, as a function of age and gender.
Technical Paper

A New Database of Child Anthropometry and Seated Posture for Automotive Safety Applications

2005-04-11
2005-01-1837
This paper presents a laboratory study of body dimensions, seated posture, and seatbelt fit for children weighing from 40 to 100 lb (18 to 45 kg). Sixty-two boys and girls were measured in three vehicle seats with and without each of three belt-positioning boosters. In addition to standard anthropometric measurements, three-dimensional body landmark locations were recorded with a coordinate digitizer in sitter-selected and standardized postures. This new database quantifies the vehicle-seated postures of children and provides quantitative evidence of the effects of belt-positioning boosters on belt fit. The data will provide guidance for child restraint design, crash dummy development, and crash dummy positioning procedures.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

2004-11-01
2004-22-0014
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

2003-06-17
2003-01-2216
Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

Development of Anthropometric Specifications for the Six-Year-Old OCATD

2001-03-05
2001-01-1057
Advanced airbag systems use information from a variety of sensors to tune the airbag performance for crash severity and occupant characteristics. A new family of Occupant Classification ATDs (OCATD) have been developed for use in the design and testing of advanced airbag systems. This paper describes the development of anthropometric standards for an OCATD that represents a typical six-year-old child. Detailed analyses of existing child anthropometry databases were conducted to develop reference dimensions. A child who closely matched the reference dimensions was measured in a variety of conditions. A custom molded measurement seat was constructed using foam-in-place seating material. The surface of the child's body was scanned as he sat in the custom seat, and the three-dimensional locations of body landmarks defining the skeleton position were recorded.
Technical Paper

Design and Development of the ASPECT Manikin

1999-03-01
1999-01-0963
The primary objective of the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program was to develop a new generation of the SAE J826 H-point manikin. The new ASPECT manikin builds on the long-term success of the H-point manikin while adding new measurement capability and improved ease of use. The ASPECT manikin features an articulated torso linkage to measure lumbar support prominence; new contours based on human subject data; a new weighting scheme; lightweight, supplemental thigh, leg, and shoe segments; and a simpler, user-friendly installation procedure. This paper describes the new manikin in detail, including the rationale and motivation for the design features. The ASPECT manikin maintains continuity with the current SAE J826 H-point manikin in important areas while providing substantial new measurement capability.
X