Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

Magnetically Oriented Core Lamination Manufactured from Non-Oriented Electrical Steel Sheets

2024-04-09
2024-01-2239
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized.
Technical Paper

Developing dynamic driver head envelope for passenger cars considering real-time road conditions

2024-04-09
2024-01-2493
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Design, Analysis, and Comparative Study of Conventional Double Wishbone Control Arms with Modified Split Type Control Arms Design for a Passenger Car

2024-04-09
2024-01-2519
In today's automotive industry, the preference for suspension systems in high-end passenger vehicles is shifting away from conventional MacPherson or double wishbone setups and toward advanced double wishbones with split-type control arms or multi-link suspensions. This shift not only enhances the ride and handling experience but also introduces greater design complexities. This paper explains the design limitations of the conventional double wishbone front suspension (with 2 ball joints) and the opportunities presented by advanced double wishbone suspension designs, including split-type lower control arms (with 3 ball joints) and double split-type control arms (with 4 ball joints). Replacing either of the rigid links (upper/lower) of the conventional double wishbone suspension with a four-bar mechanism in the case of split-type control arm wishbone suspension significantly alters the behavior of the kingpin axis, leading to consequential effects on steering and suspension parameters.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Effect of local ductility on crash performance of automotive structures considering press forming strain of advanced high strength steels

2024-04-09
2024-01-2241
A fundamental study on the ductility of high strength steels in crash deformation is carried out to investigate the effect of the local ductility of various materials on automobile crashworthiness, considering the prestrain induced by press forming in the manufacturing process. In this study, a newly developed 980 MPa-grade steels [1], ‘jetQTM’, is investigated to clarify its advantage in term of crashworthiness in comparison with the conventional DP (Dual Phase) and TRIP steels. Quasi-static axial crushing tests are performed to evaluate the crashworthiness of the different types of steel. Based on the experimental results, the effect of the local ductility of high-strength steel on the risk of material fracture is discussed. In this paper, a new bending test method, orthogonally reverse bending, (ORB), is proposed to simulate the fracture that occurs during crash deformation considering press-forming strain.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Standard

Vision Factors Considerations in Rearview Mirror Design

2024-03-18
CURRENT
J985_202403
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279.
Technical Paper

Robotic Drilling: A Review of Present Challenges

2024-03-05
2024-01-1921
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy.
Technical Paper

Path Following Performance Analysis for Siemens 840 D sl Controlled Robotic Machining Platforms with Secondary Encoders

2024-03-05
2024-01-1937
Robotic arms are widely known to fall short in achieving the tolerances required when it comes to the metal machining industry, especially for the aerospace sector. Broadly speaking, two of the main reasons for that are a lack of stiffness and a lack of accuracy. Robotic arm manufacturers have responded to the lack of stiffness challenge by producing bigger robots, capable of holding high payloads (e.g., Fanuc M-2000iA/2300) or symmetric robots (e.g., ABB IRB6660). Previous research proved that depending on the application and the material being machined, lack of stiffness will still be an issue, even for structurally bigger robotic arms, due to their serial nature. The accuracy issue has been addressed to a certain extent by using secondary encoders on the robotic arm joints. The encoder enhanced robotic arm solutions tend to be expensive and prior knowledge proves that there are still limitations when it comes to achieved accuracy.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

SAE Instrumented Arm User’s Manual

2024-02-27
CURRENT
J2855_202402
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
Magazine

Automotive Engineering: February 2024

2024-02-08
SDVs redefine OEM, supplier relation- ships and deliver new feature CES 2024 offers a busy look at the software-defined-vehicle future Tuning-up AI's 'understanding' to make safer ADAS, AVs Kognic's advanced interpretation of sensor data helps artificial intelligence and machine learning recognize the human thing to do. Tremec-trification Tremec cranks up electric-drive innovation as the logical extension of its transmission-making expertise.
Standard

Safety Labels of Off-Road Work Machines

2024-01-16
CURRENT
J115_202401
SAE J115 specifies the relevant ISO standards for application to safety labels for use on off-road work machines as defined in SAE J1116.
X