Refine Your Search

Topic

Search Results

Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2021-04-06
CURRENT
J1634_202104
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Road Load Measurement Using Onboard Anemometry and Coastdown Techniques

2020-05-26
CURRENT
J2263_202005
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 km/h and 15 km/h (or between 70 mph and 10 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20 °C (68 °F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2017-07-12
HISTORICAL
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2012-10-04
HISTORICAL
J1634_201210
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEV’s) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on subsystems apart from the vehicle. NOTE: The range and energy consumption values specified in this document are the raw, test-derived values.
Standard

Road Load Measurement Using Onboard Anemometry and Coastdown Techniques

2008-12-12
HISTORICAL
J2263_200812
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 and 15 km/h (71.5 and 9.3 mi/h). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20 °C (68 °F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
Standard

Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure

2002-10-25
CURRENT
J1666_200210
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Section 3 provides definitions of terminology used in this document.
Standard

Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure

1999-08-01
HISTORICAL
J1666_199908
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Section 3 provides definitions of terminology used in this document.
Standard

ROAD LOAD MEASUREMENT USING ONBOARD ANEMOMETRY AND COASTDOWN TECHNIQUES

1996-10-01
HISTORICAL
J2263_199610
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 and 15 km/h (71.5 and 9.3 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20 °C (68 °F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
Standard

ELECTRIC VEHICLE ACCELERATION, GRADEABILITY, AND DECELERATION TEST PROCEDURE

1993-05-01
HISTORICAL
J1666_199305
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads. It is the intent of this document to provide standard tests which will allow various performance characteristics of electric vehicles to be cross-compared on a common basis in specifications, technical papers, and engineering discussions. The tests concern attributes of the total vehicle system rather than those of its subsystems and components. Tests of components such as batteries are the subject of separate procedures. The road tests specified in this document are recommended for use whenever possible particularly to establish vehicle performance specifications. The dynamometer procedures are included primarily to facilitate development testing. Paragraph 2.2 provides definitions of terminology used in this document.
Standard

ELECTRIC VEHICLE ENERGY CONSUMPTION AND RANGE TEST PROCEDURE

1993-05-01
HISTORICAL
J1634_199305
This SAE Recommended Practice establishes uniform procedures for testing electric battery-powered vehicles which are capable of being operated on public and private roads, and is to replace the range and vehicle energy economy sections SAE J227a. The procedure addresses electric vehicles (EVs) only. It is the intent of this practice to provide standard tests which will allow for determination of energy consumption and range based on the Federal Emission Test Procedure (FTP) and the Highway Fuel Economy Test Procedure (HWFET). Realistic alternatives should be allowed for new technology. Performance is judged on the total vehicle system and the battery. Dynamometer test procedures are specified in this document in order to minimize the test-to-test variations inherent with track testing and to adhere to standard industry practice for energy consumption and range testing. Section 2 provides definitions of terminology used in this document.
Standard

VEHICLE ACCELERATION MEASUREMENT

1990-06-01
HISTORICAL
J1491_199006
To define a test procedure that when conducted will provide a repeatable measure of a vehicle's maximum acceleration performance.
Standard

VEHICLE ACCELERATION MEASUREMENT

1985-06-01
HISTORICAL
J1491_198506
To define significant driving situations involving acceleration, establish meaningful measures of such accelerations, and develop test procedures that will measure a vehicle’s maximum performance capabilities during those driving situations.
Standard

FUEL ECONOMY MEASUREMENT—ROAD TEST PROCEDURE

1974-04-01
HISTORICAL
J1082_197404
This procedure incorporates driving cycles that produce fuel consumption data relating to urban, suburban, and interstate driving patterns. The procedure is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on a test track or on suitable roads.
X