Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Modeling and Experimental Testing Analysis of Static and Dynamic Characteristics of Air Springs

2024-04-09
2024-01-2283
In order to study the effects of different factors on the static and dynamic characteristics of air springs, three models were established to calculate the static and dynamic characteristics of air springs, including modeling at the design position, modeling only considering the straight state, and modeling considering the thickness of the bellows in the straight state. Static stiffness of air springs is calculated using three different models and are compared with experiments. In the straight state model considering the thickness of the bellow, the influence of aluminum tube and bellows thickness on the static stiffness are considered, and the modeling with the straight state solved the problem of the change in cord angle after the air spring was inflated and expanded. The established model is then used to calculate static and dynamic characteristics of air springs, such as static stiffness, hysteresis loop, and dynamic stiffness.
Technical Paper

Analysis of Intrinsic Characteristics and Dynamic Response of New Energy Vehicle Battery Pack System

2024-04-09
2024-01-2302
As the main power source of new energy vehicles, the durability and fatigue characteristics of the battery pack directly affect the performance of the vehicle. The battery pack system was modelled using multi-body dynamics software, with 7 and 13 degree of freedom models developed. Using the established model, the intrinsic properties of the battery pack are computationally analyzed. To calculate the dynamic characteristics, a sinusoidal displacement excitation is applied to the wheel centre of mass, and the displacement and acceleration of the battery pack centre of mass are calculated for both models.The displacement and acceleration curves at the centre of mass of the battery pack of the two models are compared. The results show that the amplitude of the displacement and acceleration curves at the centre of mass of the 13 degrees of freedom model of the battery pack has decreased significantly.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

A Switching Control Strategy for Multiple Heating Modes Based on the Integrated Thermal Management System of Electric Vehicles

2024-04-09
2024-01-2233
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

Fatigue Life Analysis Methods for Rolling Lobe Air Spring

2024-04-09
2024-01-2259
The fatigue prediction model of an air spring based on the crack initiation method is established in this study. Taking a rolling lobe air spring with an aluminum casing as the studying example, a finite element model for analyzing force versus displacement is developed. The static stiffness and dimensional parameters of limit positions are calculated and analyzed. The influence of different modeling methods of air springs bellow are compared and analyzed. Static stiffness measurement of an air spring is conducted, and the calculation results and the measured results of the static stiffness are compared. It is shown that the relative error of the measured stiffness and calculated stiffness is within 1%. The Abaqus post-processing stage is redeveloped in Python language.
Technical Paper

Heat Dissipation Performance Analysis of Liquid-Cooled Plate in Battery Package System

2024-04-09
2024-01-2674
A liquid-cooled plate is an important component for cooling batteries inside a battery package system. The structure of the liquid-cooling plate significantly affects the temperature conditions of power batteries and the energy consumption of the liquid-cooling system. However, there is a lack of precise knowledge regarding the specific factors that contribute to these impacts. In this study, the influence of structural parameters of flow channel on the heat dissipation performance is studied to solve above problems. A test bench for measuring battery pack cooling performances was built, and pressure drop of liquid-cooled plate and maximum temperature of battery were measured. A CFD model for liquid-cooled plate performance calculations was developed. Using the established model, pressure drop, and maximum temperature were calculated. The measured data are compared with the calculated date, which validate the proposed model.
Technical Paper

Topological Optimization Design of Cooling Channel for Liquid-Cooled Plate of Power Battery

2024-04-09
2024-01-2676
The influence of the channels of a liquid-cooled plate on the heat dissipation performance of battery module is investigated in this paper. A topology optimization method for obtaining channel configurations of the liquid cooled plate is presented. Firstly, the battery pack cooling system test platform is built to test the flow resistance of the liquid-cooled plate under different flow rates and the maximum temperature and temperature difference of the battery under different working conditions. Secondly, the geometric model of the battery pack is established, and CFD software is used to simulate according to the test conditions. The test results validate the correctness of the model. Then, taking the average surface temperature of the liquid-cooled plate as the optimization objective, the topology optimization structure of the liquid-cooled plate is obtained by variable density method.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Structural Vibration Analysis and Sound Quality Improvement for a Four-Cylinder Engine

2023-05-08
2023-01-1153
An Inline 4-cylinder engine is equipped with second-order balance shafts.When the engine is running under full load in 5000rpm,the engine generated severe structural radiation noise.The bench test analysis shows that the main reason is the resonance of the engine near 800Hz and 1500Hz. In this paper, a method for modeling and analyzing the vibration of the engine structure is proposed, and the sound quality of the engine is evaluated and imporved by the Moore–Glasberg loudness method. Firstly, the finite element model of the engine was established, and the experimental modes of the engine casing assembly, crankshaft and balance shaft were measured. The natural frequencies and modal shapes obtained by calculation and experiment were compared, which validates the established finite element model.Secondly, a flexible multi-body dynamic model of the engine was established.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Battery Cooling System

2023-04-11
2023-01-0771
A battery cooling system model of electric vehicle was established. The system model consists of a battery pack, a pump, a radiator, and a fan. A cooling plate was used to cool the battery pack, and the coolant flow rate in the cooling plate was controlled by the pump. The heat in the battery cooling system was released into the ambient air through the radiator. A finite element analysis model of the cooling plate was established to calculate the pressure drop of the cooling plate. A coupled dynamics model of the battery pack-radiator cooling system was established to simulate the temperature of the battery pack during charging and discharging. Tests were carried out to obtain the pressure drop of the cooling plate and the temperature of the battery pack under different working conditions. The simulation results and test results were compared and analyzed, and the accuracy of the models were verified.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Identification of Vehicle Noise Based on Transfer Path and Condition Power Spectrum Analysis

2022-03-29
2022-01-0306
The identification of vehicle noise is the basis for studying the acoustic characteristics of vehicles. In this paper, both excitation of noise sources and response of interior noise were identified. Firstly, a transfer path analysis (TPA) model was established to identify the excitation of noise sources, which includes vehicle main noise sources, such as engine, tire, exhaust pipe and muffler. Based on the operational signals and transfer function which were tested in the vehicle semi-anechoic room, the excitation of noise sources was identified using inverse matrix method. Identify result indicated that tires have higher excitation amplitude than engine in high frequency band. Therefore, the transfer path between the tire and the cabin, such as carpet and windshield, should be taken as the focus of acoustic performance improvement. By improving the acoustic material on the transfer path, the loss of sound in the transfer path will be increase.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Research on the Bionic Design and Performance of Engine Cooling Fan with Blade Tip Serrated

2022-03-29
2022-01-0173
Turbulence caused by the blade tip of engine cooling fan is one of important noise generating factors. Existing theoretical researches show that the bionic serrated designs applied at the front and rear edges of fan blades can effectively improve the airflow characteristics and reduce the aerodynamic noise. However, the effect of its application at the blade tip needs to be explored and verified. In this research, vehicle engine fans whose tips are designed and remodeled with different size of triangular serrated edge have been tested on airduct, to explore the fan static pressure and noise that caused by changing of period and amplitude size. The large eddy simulation (LES) and FW-H acoustic analogy method are adopted to calculate the transient noise of each designed fan.
Technical Paper

A Method for Acquiring and Editing the Load Spectrum of the Drive-Shaft System for an All-Terrain Vehicle

2022-03-29
2022-01-0268
The durability road test of a vehicle is an important test to verify the reliability of vehicle components. In order to carry out the durability bench test for drive shaft systems of all-terrain vehicles, a method for acquiring time domain signals of articulation angles of the CVJ, input torque, and rotational speeds of drive shaft systems is proposed. The acquired load spectrum of drive shaft systems is preprocessed including deleting small amplitudes, de-drifting, deburring, filtering, etc. Peaks and valleys are extracted from the preprocessed load spectrum. Based on the graphic method and the estimator stabilization method, the upper and lower thresholds of the time domain extrapolation of the load spectrum are determined, and then the peaks and valleys excesses that exceed the upper and lower thresholds are extracted. The generalized pareto distribution function is used to fit the distribution of peaks and valleys excesses.
X