Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Evolution of the Ride Comfort of Alfa Romeo Cars since 1955 until 2005

2017-03-28
2017-01-1484
The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
Technical Paper

Subjective-Objective Ride Comfort Assessment of Farm Tractors

2016-04-05
2016-01-1437
The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
Journal Article

Inertia Tensor and Other Mass Properties Measurement for Automotive Applications

2014-04-01
2014-01-0090
A method for the measurement of the full mass properties of vehicles and subsystems is presented. The knowledge of the center of gravity location and of the inertia tensor of vehicles and subsystems is fundamental for performing accurate dynamic simulations, ranging from handling to durability. The accurate estimation of the inertia tensor can be achieved primarily via experimental tests. Given a rigid body and its mass, the proposed method allows to measure the center of mass location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the vehicle or the subsystem is connected. The body under test is made rotating around three axes passing nearby the body center of mass with a highly non linear motion.
Technical Paper

A New Electric Powertrain for Light Trucks: Indoor Testing and Advanced Simulation

2014-04-01
2014-01-1977
A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB.
Journal Article

6-Axis Measuring Wheels for Trucks or Heavy Vehicles

2014-04-01
2014-01-0816
The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicles. In this paper, the design and the employment of measuring wheels for trucks and heavy vehicles is presented. The measuring wheels have been optimized in order to obtain high stiffness and the approximately the same mass of the wheels normally employed. The proposed multicomponent measuring wheels are high- accuracy instruments for measuring the dynamic loads during handling and durability testing. The measuring wheels can replace the wheels of the truck under normal operation. Such family of wheels plays a major role in modern road vehicles development. The measuring wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the measuring wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road.
X