Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Flashing Emergency Lights: Influence of Intensity, Flash Rate and Synchronization on Driver Visibility, Comfort and Confidence

2022-03-29
2022-01-0801
Flashing emergency and warning lights are critical elements of public safety and traffic control during roadway incidents. These lights should not only alert drivers to their presence, but also should inform them of who and what is present on the scene, and should help to manage the responses of drivers as they navigate past the incident. First responder and driver safety depend upon all three of these functions, yet standards focus almost entirely on alerting drivers. A full-scale outdoor field study was carried out during daytime, during nighttime on dry pavement and during nighttime on wet pavement, using a mock-up roadside scene containing three police vehicles. The lights on the vehicles were adjusted to produce different levels of intensity, flash rate, and synchronization of lights across all three vehicles. In some cases, sequentially flashing lights were present.
Journal Article

Influence of Background Spectral Distribution on Perceptions of Discomfort Glare

2020-04-14
2020-01-0637
The advent of light-emitting diode (LED) technology for automotive lighting allows flexibility of the spectral distribution of forward headlighting systems, while meeting current requirements for “white” illumination. As vehicle headlights have become whiter (with more short-wavelength light output) over the past several decades, their potential impacts on visual discomfort for oncoming and preceding drivers have been hotly debated. It is known that a greater proportion of short-wavelength energy increases discomfort glare, and that increasing the background light level (e.g., through roadway lighting) will decrease perceptions of discomfort. More recently it has been demonstrated that the visual system exhibits enhanced short-wavelength sensitivity for perceptions of scene brightness.
Technical Paper

Investigating the Influence of Headlight Glare and Aim on Risk-Related Driving Behavior

2017-03-28
2017-01-1360
Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
Journal Article

Headlamp Levelness and Glare: Preliminary Analyses Based on Field Data

2013-04-08
2013-01-0749
Vehicle headlamps are essential for driver safety at night, and technological evolution of headlamps over several decades has brought substantial improvements to driver visibility and comfort. Nonetheless, glare remains an important concern among many in the driving public, perhaps even more so in North America, where requirements for headlamps differ from those in much of the rest of the world. In most of the world, headlamps producing higher luminous flux are required to have automatic leveling and cleaning systems, thought to help reduce glare. The arrival of headlamp systems in the worldwide marketplace with luminous flux values just below those triggering requirements for leveling and cleaning systems will bring new questions about the causes of and countermeasures for glare.
Technical Paper

Luminance versus Luminous Intensity as a Metric for Discomfort Glare

2011-04-12
2011-01-0111
Photometric performance specifications for vehicle headlamp specifications in North America are given in terms of luminous intensity values at various angular locations with the objective of providing sufficient illumination for forward visibility while controlling for glare toward oncoming and preceding vehicle drivers. Abundant evidence suggests that luminous intensity is an appropriate metric for characterizing the degree to which a headlamp can produce disability glare through veiling luminances under a wide range of viewing conditions. Notwithstanding that discomfort glare exhibits a differential spectral sensitivity from the photopic luminous efficiency function used to characterize light, luminous intensity does not always predict discomfort glare. For example, the luminance of the luminous element(s) can be more predictive of discomfort when headlamps are viewed from relative close distances.
Journal Article

Visual Recovery and Discomfort Following Exposure to Oncoming Headlamps

2009-04-20
2009-01-0546
A field experiment was performed to measure the effects of oncoming illuminance profiles with different photometric and temporal characteristics on visual recovery and subjective discomfort. Target detection time was correlated with the dosage, and rated discomfort was correlated with the peak illuminance of each profile. Older subjects generally had longer recovery times, but there were no differences between the age groups in terms of rated discomfort. The results suggest that discomfort glare is not predictive of visual disability and that control of luminous intensity at isolated points within the distribution of headlamps alone is not sufficient to minimize glare recovery.
Technical Paper

Methods for Assessing the Impact of Oncoming Glare on Driving Behavior

2005-04-11
2005-01-0442
Glare from oncoming vehicles while driving at night impairs visibility through the mechanism of scattered light in the eyes, which reduces the luminance contrast of objects in the field of view, and through the mechanism of increasing the visual adaptation level, which decreases visibility following glare exposure. Glare can also cause discomfort, which is most commonly assessed experimentally through the use of subjective rating scales. The present paper reports on an investigation of methods to assess glare's impact on driving behavior in a naturalistic setting. Vehicles belonging to drivers were instrumented with a photosensor to estimate the glare illuminance, as well as sensors for monitoring speed, acceleration, braking status, lane position and other attributes. Data from all of these instruments were collected and stored.
Technical Paper

Headlight Glare Exposure and Recovery

2005-04-11
2005-01-1573
There is concern that the greater light output and increased beam pattern widths of some headlamp systems may be resulting in higher glare exposures to drivers for longer times. A set of experiments is described that examines how headlamp glare exposure affects recovery time and ratings of discomfort. Theoretical glare exposures were examined to study different aspects of glare, namely peak glare illuminance and total glare dosage. Glare exposures corresponding to representative tungsten halogen (TH) and high intensity discharge (HID) systems were also examined. It was found that the shape of the glare profile had a significant effect on recovery time. A larger dose of glare (product of illuminance and exposure time) results in a longer recovery time. It was also found that discomfort ratings are dependent on glare profile, with greater discomfort being proportional to larger peak illuminances. Surprisingly, no effect of glare duration or dosage was found on discomfort.
Technical Paper

Headlamp Parameters and Glare

2004-03-08
2004-01-1280
New headlamp sources and optical designs are creating new glare scenarios on today's roadways. Recent evidence suggests that the spectral content of vehicle forward lighting may play a role in the glare that it produces. Additionally, there is concern that the decreasing size of some headlamp systems may be contributing to glare. This paper describes a field experiment designed to take a fresh look at headlamp glare, both disability and discomfort, by exploring the role of illuminance, spectrum, and size and determining the relative magnitude of each as it affects oncoming glare. Subjects seated in a test vehicle were exposed to small targets at various angles. Test glare headlamps were positioned 50 m in front of the subject at an angle of 5°, simulating oncoming traffic. The glare intensity at the subject's eye, the spectrum of the glare source (among high intensity discharge, halogen, and blue filtered), and the glare source size were systematically varied.
Technical Paper

Discomfort Glare from Headlamps: Interactions Among Spectrum, Control of Gaze and Background Light Level

2003-03-03
2003-01-0296
Discomfort glare while driving at night might have implications for long-term fatigue and ultimately, driving performance and safety. The intensity of oncoming headlights, their spectral power distribution, the location of the lights in the field of view, and the ambient illumination conditions can all impact feelings of discomfort while driving at night. Not surprisingly, light sources with higher intensities are perceived as more glaring. Similarly, perceptions of discomfort increase as the ambient lighting conditions are reduced, and as the glare sources are located closer to the line of sight. Recent research also appears to demonstrate the role of short-wavelength light in contributing to the discomfort glare response. The present paper outlines a laboratory study to probe the effects of ambient light level, spectral power distribution, and control of gaze on discomfort glare, and potential interactions among these factors.
Technical Paper

Discomfort and Disability Glare from Halogen and HID Headlamp Systems

2002-03-04
2002-01-0010
Illumination from high intensity discharge (HID) headlamps differs from halogen headlamp illumination in two important ways: HID headlamps have higher overall light output and a spectral power distribution that differs from halogen headlamps. These differences have been hypothesized to result in superior visibility with HID headlamps and most particularly in the periphery. These same factors, though, have also been conjectured to result in increased glare for drivers facing HID headlamps in oncoming driving situations. The present paper outlines a series of experimental investigations using halogen, HID, and blue-filtered halogen illumination to measure their relative impact on discomfort glare and disability glare under conditions matching those that might be experienced by oncoming drivers at night. Discomfort glare is determined using the scale devised by de Boer; disability glare is determined by measuring subjects' contrast sensitivity under different lighting conditions.
Technical Paper

Subjective Color Preferences of Common Road Sign Materials Under Headlamp Bulb Illumination

2002-03-04
2002-01-0261
Recently, there has been a proliferation of commercially available lamps with spectral light output differing from conventional halogen lamps for use in vehicle headlighting systems. For the last 20 to 30 years halogen lamps have been used as the standard source in most headlamp applications. These lamps produce the familiar blackbody-like continuous-spectrum output light. In the last ten years, high-intensity discharge (HID) light sources have come onto the market place with their characteristic discrete spectra and higher correlated color temperature (CCT). Even more recently, coated “blue” halogen lamps have become available which reduce the amount of long-wavelength light and shift the light output to higher CCTs. Currently, halogen lamps are under development that have glass envelopes doped with neodymium, which acts similarly to the coated lamps in reducing long-wavelength light and shifting the CCT to higher values.
Technical Paper

Driving in Snow: Effect of Headlamp Color at Mesopic and Photopic Light Levels

2001-03-05
2001-01-0320
Many individuals believe that yellow headlights are preferable to white headlights when driving at night during a snowfall. Although evidence exists to support the claim that yellow light can be perceived as less “glaring” or “distracting” than white light of equal luminance, it is not clear whether backscattered light of different colors are differentially effective for driver comfort or for driver performance. This study investigates a potential mechanism that could support the supposed benefit of yellow headlamps for reducing the detrimental effects of backscattered light to drivers at night. The results suggest that under low light levels when the visual field is dominated by a dynamic field of visual “noise” (like that caused by backscattered light from falling snow), performance of a tracking task similar to driving is reduced in accordance with the scotopic (rod-stimulating) content of the visual noise.
X