Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

2024-07-02
2024-01-3005
Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based operational strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based Control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by validated Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Advanced H2 ICE development aiming for full compatibility with classical engines while ensuring zero-impact tailpipe emissions

2024-06-12
2024-37-0006
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. Current emissions are rebounding from a brief decline during the economic downturn related to the Covid-19 pandemic. To get back on track to support the realization of the goal of the Paris Agreement, research suggests that GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century.2 Although these are averaged global targets, every sector and country or market can and must contribute, especially higher-income and more developed countries bear the greater capacity to act. In 2020 direct tailpipe emissions from transport represented around 8 GtC02e, or nearly 15% of total emissions.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

Parallel Sequential Boosting for a Future High-Performance Diesel Engine

2022-01-12
2022-01-5005
Future Diesel engines must meet extended requirements regarding air-fuel ratio, exhaust gas recirculation (EGR) capability, and tailored exhaust gas temperatures in the complete engine map to comply with the future pollutant emission standards. In this respect, parallel turbines combined with two separate exhaust manifolds have the potential to increase the exhaust gas temperature upstream of the exhaust aftertreatment system and reduce the catalyst light-off time. Furthermore, variable exhaust valve (EV) lifts enable new control strategies of the boosting system without additional actuators. Therefore, hardware robustness can be improved. This article focuses on the parallel-sequential boosting concept (PSBC) for a high-performance four-cylinder Diesel engine with separated exhaust manifolds combined with EV deactivation. One EV per cylinder is connected to one of the separated exhaust manifolds and, thus, connected to one of the turbines.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Hardware-in-the-Loop Based Virtual Emission Calibration for a Gasoline Engine

2021-04-06
2021-01-0417
In the field of gasoline powertrain calibration, the challenges are growing due to ever shorter time-to-market requirements and a simultaneous increase in powertrain complexity. In addition, the great variety of vehicle variants requires an increasing number of prototypes for calibration and validation tasks within the framework of the current Real Driving Emissions (RDE) regulations and the expected Post Euro 6 emission standards. Hardware-in-the-Loop (HiL) simulations have been introduced successfully to support the calibration tasks in parallel to the conventional vehicle development activities. The HiL approach enables a more reliable compliance with emission limits and improves the quality of calibrations, while reducing the number of prototype vehicles, test resources and thus overall development costs.
Technical Paper

Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration

2021-04-06
2021-01-0424
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point. Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Technical Paper

Virtual Transmission Evaluation Using an Engine-in-the-Loop Test Facility

2018-04-03
2018-01-1361
This paper describes an approach to reduce development costs and time by frontloading of engineering tasks and even starting calibration tasks already in the early component conception phases of a vehicle development program. To realize this, the application of a consistent and parallel virtual development and calibration methodology is required. The interaction between vehicle subcomponents physically available and those only virtually available at that time, is achieved with the introduction of highly accurate real-time models on closed-loop co-simulation platforms (HiL-simulators) which provide the appropriate response of the hardware components. This paper presents results of a heterogeneous testing scenario containing a real internal combustion engine on a test facility and a purely virtual vehicle using two different automatic transmission calibration and hardware setups.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
X