Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Effects of Injection Molding on Linum usitatissimum Fiber Polyvinyl Chloride Composites for Automotive Underbody Shields and Floor Trays

2024-04-29
2024-01-5053
The automotive sector’s growing focus on sustainability has been spurred to investigate the creation of sustainable resources for different parts, emphasizing enhancing efficiency and minimizing environmental harm. For use in automobile flooring trays and underbody shields, this study examines the impact of injection molding on composite materials made of polyvinyl chloride (PVC) and Linum usitatissimum (flax) fibers. As processed organic fiber content was increased, the bending and tensile rigidity initially witnessed an upsurge, peaking at a specific fiber loading. At this optimal loading, the composite exhibited tensile strength, flexural strength, and elastic modulus values of 41.26 MPa, 52.32 MPa, and 2.65 GPa, respectively. Given their deformation resistance and impact absorption attributes, the mechanical properties recorded suggest that such composites can be efficiently utilized for automotive underbody shields and floor trays.
Technical Paper

Exploring the Mechanical Properties of Modified Pistachio Shell Particulate Composites through Experimental Investigation

2024-04-29
2024-01-5052
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Technical Paper

Research on Vehicle Type Recognition Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-1992
As a key technology of intelligent transportation system, vehicle type recognition plays an important role in ensuring traffic safety,optimizing traffic management and improving traffic efficiency, which provides strong support for the development of modern society and the intelligent construction of traffic system. Aiming at the problems of large number of parameters, low detection efficiency and poor real-time performance in existing vehicle type recognition algorithms, this paper proposes an improved vehicle type recognition algorithm based on YOLOv5. Firstly, the lightweight network model MobileNet-V3 is used to replace the backbone feature extraction network CSPDarknet53 of the YOLOv5 model. The parameter quantity and computational complexity of the model are greatly reduced by replacing the standard convolution with the depthwise separable convolution, and enabled the model to maintain higher accuracy while having faster reasoning speed.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Research on Insulation Resistance Monitoring and Electrical Performance Evaluation into Permanent Magnet Synchronous Motor Considering Humidity and Heat Factors

2024-04-09
2024-01-2207
Focused on the permanent magnet synchronous motor (PMSM) used in electric, this paper proposes an online insulation testing method based on voltage injection under high-temperature and high-humidity conditions. The effect of constant humidity and temperature on the insulation performance has been also studied. Firstly, the high-voltage insulation structure and principle of PMSM are analyzed, while an electrical insulation testing method considered constant humidity and temperature is proposed. Finally, a temperature and humidity experimental cycling test is carried out on a certain prototype PMSM, taking heat conduction and radiation models, water vapor, and partial discharge into account. The results show that the electrical insulation performance of the motor under constant humidity and temperature operation environment exhibits a decreasing trend. This study can provide theoretical and practical references for the reliable durability design of PMSM.
Technical Paper

Magnetically Oriented Core Lamination Manufactured from Non-Oriented Electrical Steel Sheets

2024-04-09
2024-01-2239
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized.
Technical Paper

Enhancement of Physical and Mechanical Attributes of a Natural Fiber-Reinforced Composite for Engineering Applications

2024-04-09
2024-01-2237
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading.
X