Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Dynamics Models for Assessing Spinal Dynamics and Injury from Repeated Impact in High Speed Planing Boats

2008-04-14
2008-01-0782
High speed craft are used by civilian agencies and the military for rescue, for interdiction, and for rapid insertion and extraction of forces. Ensign et al. (2000) found evidence of a significant injury problem in a study of self-reported injuries of boat operators of high speed craft. Though repeated vertical spinal impacts with greater than 10 g peak accelerations may occur in such craft, there is currently no completely suitable injury criterion to predict the likelihood of spinal injuries from high speed craft operations. A new low-order dynamics metamodel for predicting vertical impact to the human spine has been developed using a Madymo (TNO, Inc) simulation of a seated occupant under predominantly vertical impact. This model has been validated using experimental high speed craft operations for impacts with vertical accelerations greater than 10 g.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

1998-02-23
980857
Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

Multi-Body Model of Upper Extremity Interaction with Deploying Airbag

1997-02-24
970398
Three-dimensional simulation models of a driver's right upper extremity interacting with a deploying airbag have been set up and run with the Articulated Total Body program. The goal of this study is to examine the significance of various occupant and airbag parameters during deployment, such as grip strength, upper extremity position, shoulder compliance, flap position, flap aggressivity, and deployment speed. Given a range of 250 N to 650 N, the grip strength did not affect the resultant loads. Also, the contact force and torque at the e.g. of the forearm are not sensitive to shoulder joint compliance. The flap aggressivity and the position of the airbag module relative to the upper extremity are most important in affecting the interaction. This study is used to justify cadaveric experiments involving disarticulated upper extremities.
X