Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Standard

Titanium Alloy Bars, Forgings, and Flash-Welded Rings, 5Al - 2.5V - 4Sn - 1Co - 0.8Fe Annealed

2024-04-25
CURRENT
AMS6903
This specification covers a titanium alloy in the form of bars, forgings, and flash-welded rings up through 12.000 inches (304.80 mm), inclusive, in diameter or least distance between parallel sides, and stock of any size for forging or flash-welded rings. Bars, forgings, and flash-welded rings with a nominal thickness of 3.000 inches (79.20 mm) or greater shall have a maximum cross-sectional area of 113 square inches (729 cm2) (see 8.5).
Technical Paper

A Study on Fatigue Life Prediction Technique considering Bead Notch Shape in Arc Welding of Steel Components under Multi-Axial Load

2024-04-09
2024-01-2257
This study deals with the fatigue life prediction methodology of welding simulation components involving arc welding. First, a method for deriving the cyclic deformation and fatigue properties of the weld metal (that is also called ER70S-3 in AWS, American Welding Standard) is explained using solid bar specimens. Then, welded tube specimens were used with two symmetric welds and subjected to axial, torsion, and combined in-phase and out-of-phase axial-torsion loads. In most previous studies the weld bead’s start/stop were arbitrarily removed by overlapping the starting and stop point. Because it can reduce fatigue data scatter. However, in this study make the two symmetric weld’s start/stops exposed to applying load. Because the shape of the weld bead generated after the welding process can act as a notch (Ex. root notch at weld start / Crater at weld stop) to an applied stress. Accordingly, they were intentionally designed to cause stress concentrations on start/stops.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

A Manufacturing Performance Comparison of RSW and RFSSW Using a Digital Twin

2024-04-09
2024-01-2053
The design of lightweight vehicle structures has become a common method for automotive manufacturers to increase fuel efficiency and decrease carbon emission of their products. By using aluminum instead of steel, manufacturers can reduce the weight of a vehicle while still maintaining the required strength and stiffness. Currently, Resistance Spot Welding (RSW) is used extensively to join steel body panels but presents challenges when applied to aluminum. When compared to steel, RSW of aluminum requires frequent electrode cleaning, higher energy usage, and more controlled welding parameters, which has driven up the cost of manufacturing. Due to the increased cost associated with RSW of aluminum, Refill Friction Stir Spot Welding (RFSSW) is being considered as an alternative to RSW for joining aluminum body panels. RFSSW consumes less energy, requires less maintenance, and produces more consistent welding in aluminum as compared to RSW.
Technical Paper

The Hybrid Friction Surfacing Deposition Assisted Arc Welding (FsaAW) Approach for Dissimilar Steel/Al Joining of Automobile Structure

2024-04-09
2024-01-2072
A multi-material design strategy of steel and aluminium alloy is a key solution in response to stringent emission requirements and to offset the additional weight of batteries in electric vehicles. However, dissimilar Al/steel welding is mainly challenging due to the formation of brittle and hard intermetallic compounds (IMC). In order to resolve the issue of IMC formation, the present study proposed an alternative manufacturing method consisting of friction surfacing deposition and arc welding. The proposed method involves two steps for dissimilar welding: step 1, friction surfacing deposition of aluminium alloy on the steel surface and step 2, arc welding of friction surfacing deposited steel and aluminium alloy.
Technical Paper

Resistance Rivet and Insert Welding - A Flexible Manufacturing Technique for the Aluminum/FRPs-Steel Multi-Material Body Structures

2024-04-09
2024-01-2071
Automotive body structures are being increasingly made in multi-material system consisting of steel, aluminum (Al) and fiber-reinforced plastics (FRP). Therefore, many joining techniques such as self-piercing riveting (SPR) and adhesive bonding have been developed. On the other hand, OEMs want to minimize the number of joining techniques to reduce the manufacturing complexity. Amount all joining methods, resistance spot welding (RSW) is the most advanced and cost-effective one for body-in-white. However, RSW cannot be applied for joining dissimilar materials. Therefore, a novel Rivet Resistance Spot Welding method (RRSW) was developed in which Al or FRP components can be directly welded to steel structures with existing welding systems. RRSW uses rivet-like double T-shaped steel elements as a welding adapter which are formed or integrated into Al or FRP components during their forming process. After that, they are welded to the steel components by RSW.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Technical Paper

Simulation Study on the Influence of Multi-Magnetic Particles on Oil Sensor Signals

2024-04-09
2024-01-2826
Engine operation produces particles that contaminate the lubricating oil and can damage the engine's internal components. This paper presents a model for a three-coil inductive metal particle sensor and verifies the rationality and accuracy of the model by simulating the motion of a single spherical iron particle passing through the sensor. On this basis, the simulation of coupling double particles with different sizes, distances, and shapes is carried out. The study explores the influence of particle motion on the sensor-induced signal under various conditions. The research shows that when two particles pass through the sensor, the induced voltage signal will produce superposition when the distance between the two particles is small. The peak value of the induced voltage is 1-2 times the peak value of the induced voltage of a single particle. As the distance increases, the peak value of the induced voltage initially decreases, then slowly increases, and finally stabilizes.
Technical Paper

Advanced Aftertreatment System Meeting Future HD CNVII Legislation

2024-04-09
2024-01-2379
Options for CNVII emission legislation are being widely investigated in a national program organized by China Vehicle Emission Control Center (VECC) since early 2020. It is foreseen that this possibly last legislation in China will have more stringent emission requirements compared to CNVI, including among other changes especially a further reduction of nitrogen oxide (NOx), inclusion of nitrous oxide (N2O) and sub-23 nm particle number (PN). This study investigates the technical feasibility to fulfill a CNVII emission legislation scenario, based on a modified CNVI 8 L engine operating under both cold and hot World Harmonized Transient Cycle (WHTC) and Low Load Cycle (LLC).
X