Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

1D Modeling of the Outwardly Opening Direct Injection for Internal Combustion Engines Operating with Gaseous and Liquid Fuels

2021-09-05
2021-24-0006
The in-cylinder direct injection of fuels can be a further step towards cleaner and more efficient internal combustion engines. However, the injector design and its characterization, both experimental and from numerical simulation require accurate diagnostics and efficient models. This work aims to simulate the complex behavior of the gaseous and liquid jets through an outwardly opening injector characterized by optical diagnostics using a one-dimensional model without using three dimensional models. The behavior of the jet from an outwardly opening injector changes according to the type of fuel. In the case of the gas, the experimental investigations put in evidence three main jet regions: 1) near-field region where the jet shows a complex gas-dynamic structure; 2) transition region characterized by intense mixing; 3) far-field region characterized by a fully developed subsonic turbulent jet.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Technical Paper

Optical Investigation of Injection and Combustion Phases of a Fouled Piezoelectric Injector in a Transparent CR Diesel Engine

2013-04-08
2013-01-1591
This study was conducted to determine the effects of the fouling process on the piezoelectric injectors in a transparent common-rail diesel engine. Piezoelectric injectors are characterized by a ceramic actuator that can dilate or retract when it receives a pulse of current. The piezo element controls a valve, which creates an imbalance in the pressure that is exerted at each end of the needle, causing the needle rising or closing. Two same model injectors were tested; one was new and the other one was fouled on a vehicle. The aim of the experimental investigation was to evaluate the performance of a new and a fouled piezoelectric injector in terms of injection and flame evolution. It was evaluated how the nozzle carbon deposits affect the injection quantity and combustion. The experimental apparatus was a single-cylinder research engine equipped with a Euro 5 multi-cylinder head. A second-generation common rail injection system and 6-hole piezoelectric injectors were used too.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Technical Paper

Soot Formation Analysis by Multiwavelength Spectroscopy in an External Chamber Diesel Engine Equipped with a CR Injection System

2003-03-03
2003-01-1111
Diesel combustion process was studied and characterized by digital imaging and ultraviolet-visible flame emission, extinction and scattering spectroscopy. Optical measurements were applied to a transparent diesel engine, realized by modifying a single cylinder, air-cooled, 4-stroke diesel engine by means of an external combustion chamber on the top of the engine, connected to the main chamber by a tangential passage. Diesel engine was equipped with a fully flexible electronic controlled ‘Common Rail’ injection system. Measurements were performed at 1000 rpm engine speed for two typical injection strategies. The first one consisted of a main injection in order to compare the results with those ones obtained by conventional injection system operating at low pressure. The other one was based on a pilot and main injection that is typical of current direct injection diesel engines.
X