Refine Your Search

Topic

Search Results

Standard

Environmental Control for Civil Supersonic Transport

2024-05-06
WIP
AIR746D
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2023-05-10
WIP
AS8040D
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a. Cabin heating (all occupied regions and windshield heating) b. Wing and empennage anti-icing c. Engine and accessory heating (when heater is installed as part of the aircraft) d. Aircraft deicing
Standard

Environmental Control Systems (ECS) for UA (Unmanned Aircraft)

2022-06-24
WIP
AIR7063
This document provides guidance for establishing ECS for UA by primarily referencing existing AC-9 documents that apply with some indication how they need to be adapted. The document primarily addresses cooling requirements for UA equipment. Limited information is provided for ECS requirements for future UA that may carry passengers. The document does not intend to provide detail design guidance for all types of UA. This document only provides guidance related to environmental control of onboard equipment, cargo and possible animals and passengers. It does not pertain to the related ground stations that may be controlling the UA.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

2021-08-10
CURRENT
AIR64C
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment.
Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

Aircraft Thermal Management System Engineering

2020-10-26
CURRENT
AIR5744
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint.
Standard

Environmental Systems Schematic Symbols

2020-05-20
CURRENT
ARP780C
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Environmental Control Systems for Rotorcraft

2020-05-12
CURRENT
ARP292D
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-10-17
WIP
AIR4766/1A
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-09-24
WIP
ARP89E
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-08-23
CURRENT
ARP89D
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-08-23
CURRENT
AIR4766/1
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2017-09-05
CURRENT
ARP4014A
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Standard

Thermophysical Characteristics of Working Fluids and Heat Transfer Fluids

2017-05-19
CURRENT
AIR1168/10A
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

Aircraft Cabin Pressurization Criteria

2017-04-10
WIP
ARP1270C
This ARP covers the basic criteria for the design of cabin pressure control systems (CPCS) for general aviation, commercial and military pressurized aircraft.
X