Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Numerical Characterization of Hydrogen Combustion in a High-Performance Engine: Potentials, Limitations, Modelling Uncertainties

2022-09-16
2022-24-0016
In the last years, pushed by a combination of environmental concerns and technological competition with alternative powertrain architectures, internal combustion engines (ICEs) have seen a growing interest in the adoption of greener fuels. Due to increasing restrictions on ICE tailpipe emissions and loudly advertised bans of ICEs from the passenger car market, OEMs find themselves at a very important crossroad: a complete electrification of their car fleet or the adoption of disruptive solutions in the existing ICE technology, such as the use of carbon-neutral or carbon-free fuels. In this paper the authors provide a CFD assessment of both potentials and limitations of the conversion of an existing direct-injected spark-ignited (DISI) engine for high-performance applications to a hydrogen-fuelled unit. A preliminary validation of the modelling framework for the conventional gasoline fuelling is performed to reduce modelling uncertainties.
Journal Article

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine

2017-03-28
2017-01-0555
The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
X