Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Energy and Pollutants analysis of a Series HEV Equipped with a Hydrogen-Fueled SI Engine

2023-08-28
2023-24-0132
The growing concern about Greenhouse Gas (GHG) emissions led institutions to further reduce the limits on vehicle-related CO2 emissions. Therefore, car manufacturers are developing vehicles with low environmental impact, like Hybrid-Electric Vehicles (HEVs), which in the series architecture employ an Internal Combustion Engine (ICE) coupled with an electric generator for battery recharging, thus extending the range of a Battery Electric Vehicle (BEV). For this kind of application, small four-stroke Spark Ignition (SI) engines are preferred, as they are a proven and reliable solution to increase the driving range with very low environmental impact. In series hybrid-electric powertrains, the ICE is decoupled from the drive wheels, then it can operate in a steady-state high-efficiency working point, regardless of the power required by the mission profile. The benefits of lean combustion can be exploited to increase efficiency and reduce CO2 and NOx emissions.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

A Methodology for the Experimental Validation at the Engine Test Bed of Fuel Consumption and NOx Emissions Reduction in a HEV

2022-09-16
2022-24-0006
Due to the greater need to reduce exhaust emissions of harmful gases (GHG, NOx, PM, etc.), to promote the decarbonisation process and to overcome the drawbacks of electric vehicles (low range, high cost, impact of electricity production on CO2 emissions…), the hybrid-electric vehicles are still considered as the more feasible path through sustainable mobility. However, one of the main tasks to be accomplished to get maximum benefit from hybrid-electric powertrain is the management of the energy flows between the different power sources, namely internal combustion engine, electric machine(s) and battery pack. In this paper a methodology for the experimental testing of HEVs energy management strategies at the engine test bed is presented. The experimental set-up consists in an eddy-current dyno and a light-duty common-rail Diesel engine.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems

2022-03-29
2022-01-0505
Direct injection of gaseous fuels usually involves the presence of under-expanded jets. Understanding the physics of such process is imperative for developing Direct Injection (DI) internal combustion engines fueled, for example, by methane or hydrogen. An experimental-numerical characterization of the under-expanded jets issued from an innovative multi-hole injector, designed for application in heavy-duty engines, is carried out. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and, then, a numerical simulation procedure was validated, allowing a comprehensive injection process analysis. A high-order and density-based solver, capable of reproducing the most relevant features of the under-expanded jets, was developed within OpenFOAM framework. Initially the effects of the upstream-to-downstream pressure ratio, namely Net Pressure Ratios (NPR), on the spray morphology were investigated.
Technical Paper

Sub-23 nm Particle Measurement and Assessment of Their Volatile Fraction at Exhaust of a Four Cylinder GDI Engine Fueled with E10 and E85 Under Transient Conditions

2021-09-05
2021-24-0087
In view of the new emission regulations seeking to lower the particle cut-off size down to the current 23 nm, an extensive comprehension on the nature of sub-23 nm particles is crucial. In this regard, a new challenge lies ahead considering an even more massive use of biofuels. The objective of this research study was to characterize the sub-23 nm particles and to evaluate their volatile organic fraction (VOF) from a high performance, 1.8 L gasoline direct injection (GDI) engine under the Worldwide harmonized Light vehicles Test Cycle (WLTC). Particle emissions were measured through an Engine Exhaust Particle Sizer (EEPS) capable of particle sizing and counting in the range 5.6 - 560 nm. The sampling and conditioning were performed by both a single diluter and the Dekati Engine Exhaust Diluter (DEED) a Particle Measurement Programme (PMP) compliant sample conditioning system.
Technical Paper

Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020-09-15
2020-01-2124
Compressed Natural Gas (CNG) is regarded as a promising fuel for spark-ignited (SI) internal combustion engines (ICE) to improve engine thermal efficiency and reduce both carbon dioxide and pollutant emissions. Significant advantages of CNG are higher-octane number, higher hydrogen to carbon ratio, and lower energy-specific CO2 emissions compared with gasoline. More, it can be produced in renewable ways, and is more widespread and cheaper than conventional liquid fossil fuels. In this regard, the direct injection of CNG engines can be considered a promising technology for highly efficient and low-emission future engines. This work reports an experimental and numerical characterization of high-pressure methane jets from a multi-hole injector for direct injection engines.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Technical Paper

Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure

2020-04-14
2020-01-0396
Nowadays, the regulation regards only the particles larger than 23 nm. The attention is shifting towards the sub-23 nm particles because of their large presence at the exhaust of the modern engines and their negative impact on human health. The main challenge of the regulation of these particles is the definition of a proper procedure for their measure. The nature of the sub-23 nm particles is not well understood, and their measure is strongly affected by the sampling conditions leading to not reliable measure. The aim of this paper is to provide information on the emissions of sub-23 nm particles from GDI vehicles/engines. At the same time, the presence of volatiles, which mainly contribute to the formation of sub-23 nm particles, was evaluated and the effect of sampling conditions was investigated. The analysis was performed on a 1.8L GDI powered vehicle, widely used both in North America and Europe, and a 4-cylinder GDI engine, whose features are similar to those of the vehicle.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

2019-10-07
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber. It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm.
Technical Paper

Analysis of the Effect of the Sampling Conditions on the sub-23 nm Particles Emitted by a Small Displacement PFI and DI SI Engines Fueled with Gasoline, Ethanol and a Blend

2019-09-09
2019-24-0155
The growing concerns on the emission of particles smaller than 23 nm, which are harmful to human health, lead to the necessity of introducing a regulation for these particles not yet included in the current emission standards. Considering that measurements of concentration of sub-23 nm particles are particularly sensitive to the sampling conditions, it is important to identify an effective assessment procedure. Aim of this paper is the characterization of the effect of the sampling conditions on sub-23 nm particles, emitted by PFI (port fuel injection) and DI (direct injection) spark ignition engines fueled with gasoline, ethanol and a mixture of ethanol and gasoline (E30). The experimental activity was carried out on a 250 cm3 displacement four stroke GDI and PFI single cylinder engines. The tests were conducted at 2000 rpm and 4000 rpm full load, representative of the homologation urban driving cycle.
Technical Paper

Experimental Test on the Feasibility of Passive Regeneration in a Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine

2019-09-09
2019-24-0045
Diesel engines are attractive thanks to good performance in terms of fuel consumption, drivability, power output and efficiency. Nevertheless in the last years, increasing restrictions have been imposed to particulate emissions, concerning both mass (PM) and number (PN). Different technologies have been proposed to meet emissions standards and the wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to trap PM from the exhaust gases. This technology exhibits good features such that it can be regenerated to remove any accumulation of PM. However, this process involves oxidation of the filtered PM at a high temperature through after and post fuel injection strategies, which results in an increase of fuel consumption and may lead to physical damages of the filter in the long term. This work deals with the experimental testing of a catalytic silicon carbide (SiC) wall flow DPF, aiming at decreasing the soot oxidation temperature.
Technical Paper

Experimental Investigation of a Fueled Prechamber Combustion in an Optical Small Displacement SI Methane Engine

2019-09-09
2019-24-0170
The constant aim of the automotive industry is the further improvement of engine efficiency and the simultaneous reduction of the exhaust emissions. In order to optimize the internal combustion engines it is necessary to further improve the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. In this context, the application of optical diagnostic techniques permits a deep insight into the fundamental processes such as flow development, fuel injection, and combustion process. In this paper the analysis of the combustion process of gaseous fuel ignited by the plasma jets coming from a prechamber was performed. The investigation was carried out in an optically accessible small Direct Injection Spark-Ignition (DI SI) engine fueled with Methane. The ignition was obtained with a properly designed fueled prechamber prototype.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of a Catalytic DPF

2019-04-02
2019-01-0985
1 The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emissions regulations for automotive engines. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the development of a control oriented model of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading for automotive Diesel engines. The model is intended to be used for the real-time management of the regeneration process, depending on back-pressure and thermal state.
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

2018-09-10
2018-01-1694
The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
Technical Paper

Experimental Testing of a Low Temperature Regenerating Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine

2018-04-03
2018-01-0351
The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emission limits imposed by government regulations. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. Conventional filters consist in alternately plugged parallel square channels, so that the exhaust gases flow through the porous inner walls leading to particles trapping. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the experimental testing of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading. The filter was built following an optimized procedure based on a preliminary controlled chemical erosion of the SiC porous structure.
X