Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Research on the Effects of Pre-Chamber Orifice Scheme on the Performance in a Large-Bore Natural Gas Engine

2023-10-31
2023-01-1631
Pre-chamber ignition is one of the advanced technologies to improve the combustion performance for lean combustion natural gas engine, which could achieve low NOx, simultaneously. The designing scheme of the orifices, which connects the pre-chamber and the main chamber, is the main challenge limiting the further improvement. In this work, the three-dimensional computational fluid dynamics calculation based on a four-stroke engine with 320 mm cylinder bore was conducted to investigate the effects of orifice structure on the combustion and NOx performance. The results show that the schemes with 7 and 9 orifices lead to the delayed high-temperature jets formation due to the asymmetrical airflow in the pre-chamber, which retards the ignition timing but enhances the combustion in the main chamber. The 6 orifices scheme leads to the insufficient distribution of the high-temperature jets, and the 10 orifices result in the serious interference between the adjacent high-temperature jets.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Journal Article

In-Cycle Closed-Loop Combustion Control for Pilot Misfire Compensation

2020-09-15
2020-01-2086
Pilot injections are normally used for the reduction of diesel engine emissions and combustion noise. Nonetheless, with a penalty on the indicated thermal efficiency. The cost is reduced by the minimization of the pilot mass, which on its counterpart increases the risk of pilot misfire. Pilot misfire can have a higher penalty on the indicated efficiency if it is not compensated adequately. This paper investigates how in-cycle closed-loop combustion control techniques can reduce the effects of pilot misfire events. By closed-loop combustion control, pilot misfire can be detected and counteracted in-cycle. Two injection strategies are investigated. The first is the control of the main injection, the second includes an additional second pilot injection. Based on the in-cycle misfire diagnose, two architectures are investigated. The first uses a cycle-to-cycle controller to set the main injection under each scenario.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

2019-04-02
2019-01-0761
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1.
Technical Paper

Sensitivity Analysis of the Low Temperature Combustion Index to Driving Cycle and Vehicle Specifications

2019-04-02
2019-01-0959
Homogeneous charge compression ignition (HCCI), a low temperature combustion (LTC) engine concepts, offers the potential to significantly reduce NOx and particulate, while also produce diesel-like efficiency. However, many technical challenges, including an established fuel performance metric, have hindered the advancement of this technology. In the present work, we used a design-of-experiments approach to address sensitivity of our previously-developed metric for LTC engine fuel performance: the LTC index. Using two different statistical strategies: one-at-a-time (OAT) analysis and 23 factorial design, we targeted driving cycle, weight, maximum power, as well as compression ratio as input parameters to determine their individual and interactive impacts to the LTC index for a wide range of fuels relevant to advanced internal combustion engines research.
Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Journal Article

NOx-Conversion Comparison of a SCR-Catalyst Using a Novel Biomimetic Effervescent Injector on a Heavy-Duty Engine

2019-01-15
2019-01-0047
NOx pollution from diesel engines has been stated as causing over 10 000 pre-mature deaths annually and predictions are showing that this level will increase [1]. In order to decrease this growing global problem, exhaust after-treatment systems for diesel engines have to be improved, this is especially so for vehicles carrying freight as their use of diesel engines is expected to carry on into the future [2]. The most common way to reduce diesel engine NOx out emissions is to use SCR. SCR operates by injecting aqueous Urea solution, 32.5% by volume (AUS-32), that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths.
Technical Paper

The Potential of SNCR Based NOx Reduction in a Double Compression Expansion Engine

2018-04-03
2018-01-1128
Selective Non-Catalytic Reduction (SNCR), used to reduce the emissions of nitrogen oxides (NOx), has been a well-established technology in the power plant industry for several decades. The SNCR technique is an aftertreatment strategy based on thermal reduction of NOx at high temperatures. In the compression ignition engine application, the technology has not been applicable due to low exhaust temperatures, which makes the SCR (Selective Catalytic Reduction) system essential for efficient nitrogen oxide reduction to fulfill the environment legislation. For a general Double Compression Expansion Engine (DCEE) the complete expansion cycle is split in two separate cycles, i.e. the engine is a split cycle engine. In the first cylinder the combustion occurs and in the second stage the combustion gas is introduced and further expanded in a low-pressure expansion cylinder. The combustion cylinder is connected with the expansion cylinder through a large insulated high-pressure tank.
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Technical Paper

NOx-Conversion and Activation Temperature of a SCR-Catalyst Whilst Using a Novel Biomimetic Flash-Boiling AdBlue Injector on a LD Engine

2016-10-17
2016-01-2212
Yearly 3.3 million premature deaths occur worldwide due to air pollution and NOx pollution counts for nearly one seventh of those [1]. This makes exhaust after-treatment a very important research and has caused the permitted emission levels for NOx to decrease to very low levels, for EURO 6 only 0.4 g/kWh. Recently new legislation on ammonia slip with a limit of 10 ppm NH3 has been added [2], which makes the SCR-technology more challenging. This technology injects small droplets of an aqueous Urea solution into the stream of exhaust gases and through a catalytic reaction within the SCR-catalyst, NOx is converted into Nitrogen and Water. To enable the catalytic reaction the water content in the Urea solution needs to be evaporated and the ammonia molecules need to have sufficient time to mix with the gases prior to the catalyst.
Technical Paper

Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC

2016-10-17
2016-01-2300
In order to reduce nitrogen oxides (NOx) and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions; however, due to increased fuel stratifications, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC) at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
X