Refine Your Search

Topic

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

Impact of the Vehicle Environment on the Thermal Behavior of the Electrical Wiring

2022-03-29
2022-01-0133
The thermal behavior of wires within the electrical distribution system (EDS) has a strong impact on the conductor cross section, the type of insulation, the derating, and the fusing system, and therefore on weight, cost, and reliability. Consequently, significant efforts have been made to develop sound static and dynamic thermal models for single wires and wire bundles. However, these models are based on the simplifying assumption that the object is completely surrounded by air, where, with the exception of free convection, airflow can be neglected, and where no interaction with other objects is considered. The approach presented in this paper takes into account the actual environment and routing within a vehicle, where some objects such as metal sheets can be considered as heat sinks and other objects, e.g. a motor block, as heat sources.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Journal Article

Evaluation of Future Topologies and Architectures for High-Reliability Electrical Distribution Systems

2020-04-14
2020-01-1296
Within the scope of the development of autonomous vehicles, the mandatory reliability requirements of the electrical power supply, and consequently of the electrical distribution system (EDS), are increased considerably. In addition, the overall rising number of electrical functions leads to significantly higher electrical power demands, while strict cost, weight and packaging constraints must be upheld. Current developments focus on adding redundancies, enhancing physical robustness, or dimensioning critical components. New approaches address predictive power management, better diagnostic capabilities, and, the subject of this paper, alternative topologies and architectures [1]. These are derivations of the conventional tree structure, as well as ring- or linear-bus-based zonal architectures, which feature in part distributed storage devices or semiconductor switches that rearrange the power paths in case of a fault [2,3].
Technical Paper

Optimization and Evaluation of 12V/48V Architectures Based on EDS Simulation and Real Drive Cycles

2019-04-02
2019-01-0482
Both the rising number of electrical systems and the electrical part of the powertrain are considerably increasing the electrical power requirements of vehicles. As a consequence, multiple voltage supply levels have been introduced. However, even if only the 12V/48V configuration is considered, as in this paper, the number of possible electrical distribution system (EDS) architectures is greatly enlarged. Additional degrees of freedom are the allocation of the loads to the voltage levels, the dimensioning of new components, and the control strategy. Hence, the optimization of such architectures must be based on simulation, which allows the evaluation of a multitude of variants and test scenarios within an acceptable time frame. While strict cost, weight, and quality constraints must be upheld, the stability of the voltage supply is a major focus because a significant part of future electrical systems is highly safety-critical.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Technical Paper

Data-driven Modeling of Thermal Fuses

2018-04-03
2018-01-0768
Both the integration of safety-critical electrical systems and the increasing power requirements in vehicles present a challenge for electrical distribution systems in terms of reliability, packaging, weight, and cost. In this regard, the wire protection device is a key element, as it determines the reliability of the short circuit detection, the immunity against false tripping, and the wire diameters. Currently, in most cases, thermal fuses are used, due to their low cost and robust design. However, the description of their tripping behavior based only on steady-state currents is insufficient for the increasingly complex current profiles in vehicles. Thus, to achieve an optimum dimensioning of a fuse-wire combination, a profound understanding of the thermal behavior of both components under dynamic load conditions is mandatory. However, the FEM tools used for the thermal design of fuses are relatively slow, require huge calculation resources, and must be well-parameterized.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Journal Article

Model-Based Circuit Protection Using Solid State Switches

2017-03-28
2017-01-1641
Currently, circuit breakers and, in most cases, thermal fuses are used for wire protection due to their low cost and robust design. As an alternative, solid state switches are being considered within future electrical distribution systems (EDS) for several reasons, e.g. resetability, diagnosis, smaller tolerances, and reduced dependencies on ambient temperature or arcing. Particularely if combined with benefits on the system level, such an application can be advantageous. The new approach presented in this paper uses a thermal model of the wire instead of only an emulation of the thermal fuse behavior. This allows, based on the electrical current profile, the calculation of the wire temperature and thus a robust and precise protection of the wire. In addition, it minimizes the probability of faulty switching, which is of particular importance with regard to safety-critical electrical functions.
Journal Article

Tool-based Optimization of the Topology of an Electrical Distribution System (EDS)

2016-04-05
2016-01-0103
The topology of an EDS, defined by the routing paths and by the location of the distribution boxes and the inline connectors, has a strong impact on weight and required amount of material, especially of copper, as well as on the manufacturing- and assembly time. Although a good part of the routing and packaging is fixed due to technical reasons and carry-over situations, in general there are enough optional paths and locations to allow up to several thousand alternative topologies. For these reasons, an optimization is possible as well as important. For such an optimization, in this paper a method is presented to concurrently minimize predefined criteria, e.g. the required copper, length of the wires, and the overall length of the wire bundles. It is based on designated algorithms for the variation of the topology, the routing, and the calculation of the optimization criteria as mentioned above.
Technical Paper

Optical Investigation of Biofuel Effects on NO and PAH Formation in Diesel-Like Jets

2015-09-06
2015-24-2485
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this reason in this paper a blend out of 1-octanol and di-n-butylether and pure di-n-butylether are investigated in comparison to n-heptane as diesel-like fuel. The alternative fuels have a different combustion behavior particularly concerning important combustion parameters like ignition delay and mixture formation. Especially the formation of pollutants like nitrogen oxides in the combustion of alternative fuels is of global interest. The knowledge of the combustion behavior is important to design new engine geometries or implement a new calibration of the engine. In previous measurements in a single cylinder engine it was found out that both alternative fuels form nearly no soot emissions. For this reason now NOx is investigated optically to avoid the traditional soot NOx trade-off in diesel combustion.
Journal Article

A Statistical Analysis of Electrical Power Requirements in Vehicles

2015-04-14
2015-01-0243
The increasing power and safety requirements of electrical systems present a challenge for future automotive electrical networks. However, the modeling of use-profiles and the overall power consumption of electrical systems proves to be difficult as the number of potential on/off combinations of the loads is tremendous. Furthermore, the operation of some loads is correlated or depends upon the operating conditions. Thus, simple worst-case calculations applied to this complexity often lead to an over-specification of components. The proposed approach is based on the probabilities of loads being in the on-state and their respective interdependencies with each other and with boundary conditions such as time of day. Applying basic statistics and a new iterative algorithm, it allows the calculation of the probability of consumed total power for a given set of boundary conditions and of, very importantly, its expected continuous period.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Technical Paper

Comparison of Model Predictions with Temperature Data Sensed On-Board from the Li-ion Polymer Cells of an Electric Vehicle

2012-05-15
2011-01-2443
One of the challenges faced when using Li-ion batteries in electric vehicles is to keep the cell temperatures below a given threshold. Mathematical modeling would indeed be an efficient tool to test virtually this requirement and accelerate the battery product lifecycle. Moreover, temperature predicting models could potentially be used on-board to decrease the limitations associated with sensor based temperature feedbacks. Accordingly, we present a complete modeling procedure which was used to calculate the cell temperatures during a given electric vehicle trip. The procedure includes a simple vehicle dynamics model, an equivalent circuit battery model, and a 3D finite element thermal model. Model parameters were identified from measurements taken during constant current and pulse current discharge tests. The cell temperatures corresponding to an actual electric vehicle trip were calculated and compared with measured values.
Technical Paper

A Generic Modeling Approach for Automotive Power Net Consumers

2012-04-16
2012-01-0924
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future automotive electrical networks. Both reliability and performance must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. Often, in order to cope with these requirements, merely an upgrade of the existing wiring harness design is used, resulting in additional complexity, weight, and cost [3]. A characterization of the wiring harness and its electrical consumers facilitates a systematic optimization approach aimed at designing new automotive power networks [1, 5]. Measurement and analysis methods to characterise the thermal behaviour of the wiring harness have been presented and discussed in a previous paper [4] This paper presents and compares two methods aimed at modeling the electrical behavior of consumers at various voltages and temperatures.
Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Characterization and Test of Automotive Electrical Power Networks

2009-04-20
2009-01-1093
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future vehicle power nets. Reliability and performance of the electrical network must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. This paper presents a test bench for automotive electrical networks based on a hardware-in-the-loop (HiL) platform. The test bench is used to assess the power and temperature behavior of the wiring harness and the connected power consumers. This characterisation facilitates the development of new tailored automotive electrical networks to meet the increased requirements while efficiently using the available resources.
X