Refine Your Search

Topic

Search Results

Standard

E/E Diagnostic Test Modes: Zero Emission Vehicle Propulsion Systems on UDS (ZEVonUDS)

2022-12-16
CURRENT
J1953_202306
SAE J1979-3 describes the communication between the zero emissions propulsion systems and test equipment required by government regulations. Standardization regulations require passenger cars and light-, medium-, and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. To achieve this, SAE J1979-3 is based on the Open Systems Interconnection (OSI) Basic Refer to Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers.
Standard

E/E Diagnostic Test Modes: Zero Emission Vehicle Propulsion Systems on UDS (ZEVonUDS)

2022-12-16
HISTORICAL
J1979-3_202212
SAE J1979-3 describes the communication between the zero emissions propulsion systems and test equipment required by government regulations. Standardization regulations require passenger cars and light-, medium-, and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. To achieve this, SAE J1979-3 is based on the Open Systems Interconnection (OSI) Basic Refer to Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers.
Standard

NOx Tracking Parameter Accuracy

2022-08-05
CURRENT
J3349_202208
This SAE Information Report provides SAE’s recommendations for meeting the requirements for REAL NOx accuracy demonstration and for the implementation of REAL NOx binning requirements as defined in OBD regulations 13 CCR 1971.1 and 13 CCR 1968.2.
Standard

Recommended Practice for Pass-Thru Vehicle Programming

2022-07-22
WIP
J2534-1_5
This SAE Recommended Practice describes a standardized interface that connects between a standard personal computer (PC) and vehicle.The purpose of this interface is to enable the reprogramming of emission-related control modules, in 2004 and later model year vehicles. The interface shall consist of the necessary hardware and/or software to support the requirements defined in this document. It is expected that vehicle manufacturers will provide the software application that will control the pass-thru interface, to perform the actual reprogramming. The goal of this document is to ensure that reprogramming software from any vehicle manufacturer is compatible with interface supplied by any tool manufacturer. A common interface for all vehicle manufacturers reduces the tool costs for aftermarket garages, while allowing each vehicle manufacturer to control the programming sequence for the electronic control units (ECUs) in their vehicles.
Standard

Diagnostic Trouble Code Definitions

2022-07-15
WIP
J2012
This document supersedes SAE J2012 DEC2007, and is technically equivalent to ISO 15031-6:2010 with the exceptions described in 1.2.This document is intended to define the standardized Diagnostic Trouble Codes (DTC) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage.
Standard

OBD-II Scan Tool

2022-05-26
CURRENT
J1978_202205
SAE J1978/ISO 15031-4 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient, and safe access to all regulated OBD (on-board diagnostic) services on any vehicle which is compliant with SAE J1978/ISO 15031-4. The SAE J1978 content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. on-board diagnostic (OBD) regulations. The ISO 15031-4 content of this document is intended to satisfy the requirements of OBD requirements in countries other than the U.S., and includes functionality not required or not allowed in the U.S. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979/ISO 15031-5.
Standard

Pass-Thru Extended Feature - Ethernet

2022-01-17
CURRENT
J2534-2/13_0500_202201
This SAE Recommended Practice is part of the SAE J2534-2/X_0500 set of documents that extends the SAE J2534-1_0500 API (version 05.00) specification, and defines how to implement ethernet within the SAE J2534 API framework. This document details only the changes from SAE J2534-1_0500 and items not specifically detailed in this document are assumed to have not changed. An SAE J2534-2/13_0500 interface shall be compliant to the ethernet feature only when all the required functionality in this SAE Recommended Practice is implemented. Any functionality not required for compliance will be specifically marked as “optional” in this document. This document must be used in conjunction with the SAE J2534-2/BA_0500 and SAE J2534-2/RE_0500 documents.
Standard

Pass-Thru Extended Features - Ethernet NDIS

2022-01-17
CURRENT
J2534-2/9_0500_202201
This SAE Recommended Practice is part of the SAE J2534-2/X_0500 set of documents that extends the SAE J2534-1_0500 API (version 05.00) specification, and defines how to implement ethernet NDIS within the SAE J2534 API framework. This document details only the changes from SAE J2534-1_0500 and items not specifically detailed in this document are assumed to have not changed. An SAE J2534-2/9_0500 interface shall be compliant to the ethernet NDIS feature only when all the required functionality in this Recommended Practice is implemented. Any functionality not required for compliance will be specifically marked as “optional” in this document. This document must be used in conjunction with the SAE J2534-2/BA_0500 and J2534-2/RE_0500 documents.
Standard

Recommended Practice for Pass-Thru Vehicle Programming

2022-01-05
CURRENT
J2534-1_0500_202201
This SAE Recommended Practice describes a standardized interface that connects between a standard personal computer (PC) and vehicle. The purpose of this interface is to enable the reprogramming of emission-related control modules, in 2004 and later model year vehicles. The interface shall consist of the necessary hardware and/or software to support the requirements defined in this document. It is expected that vehicle manufacturers will provide the software application that will control the pass-thru interface, to perform the actual reprogramming. The goal of this document is to ensure that reprogramming software from any vehicle manufacturer is compatible with interface supplied by any tool manufacturer. A common interface for all vehicle manufacturers reduces the tool costs for aftermarket garages, while allowing each vehicle manufacturer to control the programming sequence for the electronic control units (ECUs) in their vehicles.
Standard

OBD-II Communications Anomaly List

2021-12-13
CURRENT
J1699/4_202112
To define a list of anomalies related to OBD Communications. Misinterpretations of various OBD Communications Standards and Recommended Practices have resulted in OBD “no-communications” situations in the field. This Information Report identifies the most prevalent of these.
Standard

NOx Tracking Parameter Accuracy

2021-10-19
HISTORICAL
J3349_202110
This SAE Information Report provides SAE’s recommendations for meeting the requirements for REAL NOx accuracy demonstration and for the implementation of REAL NOx binning requirements as defined in OBD regulations 13 CCR 1971.1 and 13 CCR 1968.2.
Standard

SAE J1850 Verification Test Procedures

2021-07-16
CURRENT
J1699/1_202107
This SAE Recommended Practice recommends test methods, test procedures, and specific test parameters to help verify that vehicles and test tools can communicate using the SAE J1850. This document only verifies the portion of SAE J1850 that is used for OBD-II communications. The term “test tool” is synonymous with OBD-II Scan tool.
Standard

Vehicle OBD II Compliance Test Cases

2021-05-04
WIP
J1699/3
The main purpose of this SAE Recommended Practice is to verify that vehicles are capable of communicating a minimum subset of information in accordance with the diagnostic test services specified in SAE J1979, or the equivalent document ISO 15031-5. Any software meeting these specifications will utilize the vehicle interface that is defined in SAE J2534. SAE J1699-3 tests shall be run using an SAE J2534-1 (API Version 04.04) Interface. However, the use of an SAE J2534-2 (API Version 04.04) Interface shall be permitted if the following conditions are met: The number of 29-bit ISO 15765 OBD ECUs exceeds the capability of the SAE J2534-1 Interface. The SAE J2534-2 Interface meets or exceeds all of the SAE J2534-1 requirements and also supports the SAE J2534 2 feature “Mixed Format Frames on a CAN Network.”
Standard

Vehicle OBD II Compliance Test Cases

2021-04-28
CURRENT
J1699/3_202104
The main purpose of this SAE Recommended Practice is to verify that vehicles are capable of communicating a minimum subset of information in accordance with the diagnostic test services specified in SAE J1979, or the equivalent document ISO 15031-5. Any software meeting these specifications will utilize the vehicle interface that is defined in SAE J2534. SAE J1699-3 tests shall be run using an SAE J2534-1 (API Version 04.04) Interface. However, the use of an SAE J2534-2 (API Version 04.04) Interface shall be permitted if the following conditions are met: The number of 29-bit ISO 15765 OBD ECUs exceeds the capability of the SAE J2534-1 Interface. The SAE J2534-2 Interface meets or exceeds all of the SAE J2534-1 requirements and also supports the SAE J2534-2 feature “Mixed Format Frames on a CAN Network.”
Standard

E/E Diagnostic Test Modes: OBDonUDS

2021-04-22
CURRENT
J1979-2_202104
SAE J1979-2 describes the communication between the vehicle's OBD systems and test equipment required by OBD regulations. On-Board Diagnostic (OBD) regulations require passenger cars and light-, medium-, and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. To achieve this, SAE J1979-2 is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers.
Standard

J1979-DA, Digital Annex of E/E Diagnostic Test Modes

2021-04-21
HISTORICAL
J1979DA_202104
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
Standard

J1979-DA, Digital Annex of E/E Diagnostic Test Modes

2019-05-08
HISTORICAL
J1979DA_201905
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
Standard

Permanently or Semi-Permanently Installed Diagnostic Communication Devices

2019-04-30
WIP
J3005-1

The scope of the document is to define communication best practices in order to minimize problems for the vehicle owner when installing equipment which has a permanently or semi-permanently diagnostic CAN communication device connected to the SAE J1962 connector, or hardwired directly to the in-vehicle network.

Standard

Misfire Generator Functional Requirements

2019-04-11
CURRENT
J2901_201904
The intent of the specification is to present a functional set of requirements which define the user and hardware interfaces while providing sufficient capability to meet the misfire patterns for compliance demonstration and engineering development. Throughout this requirement, any reference to “ignition or injector control signal” is used interchangeably to infer that the effected spark ignition engine’s ignition control signal or the compression ignition engine’s injector control signal is interrupted, timing phased, or directly passed by the misfire generator. For spark ignition engines, the misfire generator behaves as a spark-defeat device which induces misfires by inhibiting normal ignition coil discharge. It does so by monitoring the vehicle’s ignition timing signals and suspends ignition coil saturation for selected cylinder firing events. The misfire generator will thereby induce engine misfire in spark ignited gasoline internal combustion engines; including rotary engines.
Standard

Permanently or Semi-Permanently Installed Diagnostic Communication Devices

2019-02-21
CURRENT
J3005-1_201902
The scope of the document is to define communication best practices in order to minimize problems for the vehicle owner when installing equipment which has a permanently or semi-permanently diagnostic CAN communication device connected to the SAE J1962 connector, or hardwired directly to the in-vehicle network.
X