Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Journal Article

Start-Up Transient Vibration Analysis of a Vehicle Powertrain System Equipped with a Nonlinear Clutch Damper

2015-06-15
2015-01-2179
The transient vibration phenomenon in a vehicle powertrain system during the start-up (or shut-down) process is studied with focus on the development and experimental validation of the nonlinear powertrain models. First, a new nonlinear four-degree-of-freedom torsional powertrain model for this transient event, under instantaneous flywheel motion input, is developed and then validated with a vehicle start-up experiment. Second, the interactions between the clutch damper and the transmission transients are established via transient metrics. Third, a single-degree-of-freedom nonlinear model, focusing on the multi-staged clutch damper, is developed and its utility is then verified.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

Modeling of Active and Passive Damping Patches with Application to a Transmission Casing Cover

2015-06-15
2015-01-2261
Combined active and passive damping is a recent trend that can be an effective solution to challenging NVH problems, especially for lightweight vehicle components that demand advanced noise and vibration treatments. Compact patches are of particular interest due to their small size and cost, however, improved modeling techniques are needed at the design stage for such methods. This paper presents a refined modeling procedure for side-by-side active and passive damping patches applied to thin, plate-like, powertrain casing structures. As an example, a plate with fixed boundaries is modeled as this is representative of real-life transmission covers which often require damping treatments. The proposed model is then utilized to examine several cases of active and passive patch location, and vibration reduction is determined in terms of insertion loss for each case.
Journal Article

Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations

2013-05-13
2013-01-1924
Fluid filled bushings are commonly used in vehicle suspension and sub-frame systems due to their spectrally-varying and amplitude-dependent properties. Since the literature on this topic is sparse, a controlled laboratory prototype bushing is first designed, constructed, and instrumented. This device provides different internal combination of long and short flow passages and flow restriction elements. Experiments with sinusoidal displacement excitations are conducted on the prototype, and dynamic stiffness spectra along with fluid chamber pressure responses are measured. The frequency-dependent properties of several commonly seen hydraulic bushing designs are experimentally studied and compared under two excitation amplitudes. Further, new linear time-invariant models with one long and one short flow passages (in parallel or series) are proposed along with the limiting cases.
Journal Article

Analysis of Speed-Dependent Vibration Amplification in a Nonlinear Driveline System Using Hilbert Transform

2013-05-13
2013-01-1894
The engine start-up process introduces speed-dependent transient vibration problems in ground vehicle drivelines as the torsional system passes through the critical speeds during the acceleration process. Accordingly, a numerical study is proposed to gain more insights about this transient vibration issue, and the focus is on nonlinear analysis. First, a new nonlinear model of a multi-staged clutch damper is developed and validated by a transient experiment. Second, a simplified nonlinear torsional oscillator model with the multi-staged clutch damper, representing the low frequency dynamics of a typical vehicle driveline, is developed. The flywheel velocity measured during the typical engine start-up process is utilized as an excitation. The envelope function of the speed-dependent response amplification is estimated via the Hilbert transform technique. Finally, the envelope function is effectively utilized to examine the effect of multi-staged clutch damper properties.
Journal Article

Effect of the Tooth Surface Waviness on the Dynamics and Structure-Borne Noise of a Spur Gear Pair

2013-05-13
2013-01-1877
This article studies the effects of tooth surface waviness and sliding friction on the dynamics and radiated structure-borne noise of a spur gear pair. This study is conducted using an improved gear dynamics model while taking into account the sliding frictional contact between meshing teeth. An analytical six-degree-of-freedom (6DOF) linear time varying (LTV) model is developed to predict system responses and bearing forces. The time varying mesh stiffness is calculated using a gear contact mechanics code. A Coulomb friction model is used to calculate the sliding frictional forces. Experimental measurements of partial pressure to acceleration transfer functions are used to calculate the radiated structure-borne noise level. The roles of various time-varying parameters on gear dynamics are analyzed (for a specific example case), and the predictions from the analytical model are compared with prior literature.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

2007-05-15
2007-01-2179
Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Stick-Slip Behavior of Torque Converter Clutch

2005-05-16
2005-01-2456
The chief objective of this paper is to study the non-linear behavior of torque converter clutch within the context of an automotive drivetrain. An analytical procedure to determine the pure stick to stick-slip motions is developed based on the linear system analysis. This procedure can efficiently and accurately identify the frequency ranges where linear or non-linear studies are needed. Stick-slip behavior can be clearly observed as a result of the engine torque irregularity and nonlinear friction characteristics. In particular, the effect of the friction disc inertia is studied. Both analytical and numerical results show that this inertia significantly affects the system dynamics. Our predictions compare well with prior measurements on a passive vibration absorber experiment.
Technical Paper

Development of a Clunk Simulation Model for a Rear Wheel Drive Vehicle With Automatic Transmission

2005-05-16
2005-01-2292
A reduced model is developed for transient analysis of gear rattle in an automatic transmission (AT) powertrain. Linear modal analysis for the reduced order model compares well with a detailed model that includes planetary gear dynamics. Clearance type lash functions are used for the reduced geared coordinates of the automatic transmission and final drive. Impacts within the gear pairs are affected by the engine surging, shaft stiffness, component inertias, engine harmonics, drag torques, braking, viscous damping and vehicle load. The occurrence of these impacts, or clunk, from shuffle and axle oscillations is demonstrated under typical driving conditions.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Effect of Viscoelastic Patch Damping on Casing Cover Dynamics

2001-04-30
2001-01-1463
Many automotive components and sub-systems require viscoelastic damping treatments to control noise and vibration characteristics. To aid the dynamic design process, new approaches are needed for modeling of partial damping treatments and characterization of the overall dynamic behavior. The analytical component of the design process is illustrated via the transmission casing cover, along with supporting experiments. First, the vibration response of production casing plates is examined, with and without the constrained layer treatment. A modified flat plate is employed along with a generic housing that provides the realistic boundary conditions for subsequent work. A simplified analytical damping model for constrained viscoelastic layer damping is suggested based on assumed modal functions. Using the analytical model, design guidelines in terms of optimal patch shapes and locations are suggested.
Technical Paper

Vibration Power Transmission Through Multi-Dimensional Isolation Paths Over High Frequencies

2001-04-30
2001-01-1452
In many vibration isolation problems, translational motion has been regarded as a major contributor to the energy transmitted from a source to a receiver. However, the rotational components of isolation paths must be incorporated as the frequency range of interest increases. This article focuses on the flexural motion of an elastomeric isolator but the longitudinal motion is also considered. In this study, the isolator is modeled using the Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion), and linear, time-invariant system assumption is made throughout this study. Two different frequency response characteristics of an elastomeric isolator are predicted by the Timoshenko beam theory and are compared with its subsets. A rigid body is employed for the source and the receiver is modeled using two alternate formulations: an infinite beam and then a finite beam. Power transmission efficiency concept is employed to quantify the isolation achieved.
Technical Paper

Study of Nonlinear Hydraulic Engine Mounts Focusing on Decoupler Modeling and Design

1997-05-20
971936
Decoupler nonlinearities of the automotive hydraulic engine mount affect its isolation performance and the transmission of structure-borne noise. The kinematic gap nonlinearity of the decoupler is examined in considerable detail in the context of the quarter car model. It is shown that while modeling it with a “softened” nonlinear expression may only moderately affect predicted system behavior at the excitation frequency, it can significantly after it at higher harmonics, changing the predicted level of structure-borne noise transmission. Studies of multi-harmonic motion and vibratory power transmission under sinusoidal and composite excitation conditions confirm that, in fact, use of a decoupler with a “softened” nonlinearity improves performance.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

1997-05-20
971899
The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Periodic Response of Nonlinear Engine Mounting Systems

1995-05-01
951297
A new semi-analytical framework for the study of passive or active engine mounting systems is presented. It recognizes that most practical problems incorporate a nonlinear mount or isolation element and the resulting physical system, consisting of the engine, mount and flexible base, involves many degrees of freedom. Unlike linear systems, sinusoidal excitation produces a periodic response, including super- and sub- harmonics. Two example case systems are employed to illustrate key concepts of the framework. The first numerical example case involves a passive hydraulic engine mount with an inertia track. The second example case is a novel experimental system that has been developed to study active and passive, nonlinear mounting problems. New analytical and experimental results are presented and various nonlinear phenomena are considered. The impact of nonlinearity on vibratory power transmission and active control is also investigated.
X