Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Effects of an Annular Piston Bowl-Rim Cavity on In-Cylinder and Engine-Out Soot of a Heavy-Duty Optical Diesel Engine

2021-04-06
2021-01-0499
The effect of an annular, piston bowl-rim cavity on in-cylinder and engine-out soot emissions is measured in a heavy-duty, optically accessible, single-cylinder diesel engine using in-cylinder soot diagnostics and exhaust smoke emission measurements. The baseline piston configuration consists of a right-cylindrical bowl, while the cavity-piston configuration features an additional annular cavity that is located below the piston bowl-rim and connected to the main-combustion chamber through a thin annular passage, accounting for a 3% increase in the clearance volume, resulting in a reduction in geometric compression ratio (CR) from 11.22 to 10.91. Experiments using the cavity-piston configuration showed a significant reduction of engine-out smoke ranging from 20-60% over a range of engine loads.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Technical Paper

Measurements and Correlations of Local Cylinder-Wall Heat-Flux Relative to Near-Wall Chemiluminescence across Multiple Combustion Modes

2020-04-14
2020-01-0802
Minimizing heat-transfer (HT) losses is important for both improving engine efficiency and increasing exhaust energy for turbocharging and exhaust aftertreatment management, but engine combustion system design to minimize these losses is hindered by significant uncertainties in prediction. Empirical HT correlations such as the popular Woschni model have been developed and various attempts at improving predictions have been proposed since the 1960s, but due to variations in facilities and techniques among various studies, comparison and assessment of modelling approaches among multiple combustion modes is not straightforward. In this work, simultaneous cylinder-wall temperature and OH* chemiluminescence high-speed video are all recorded in a single heavy-duty optical engine operated under multiple combustion modes. OH* chemiluminescence images provide additional insights for identifying the causes of near-wall heat flux changes.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Technical Paper

Cavitating Flow within an Injector-Like Geometry and the Subsequent Spray

2019-04-02
2019-01-0284
Cavitation plays a significant role in the spray characteristics and the subsequent mixing and combustion process in engines. Cavitation has beneficial effects on the development of the fuel sprays by improving injection velocity and promoting primary break-up. On the other hand, intense pressure peaks induced by the vapor collapse may lead to erosion damage and severe degradation of the injector performance. In the present paper, the transient cavitating flow in the injector-like geometry was investigated using the modified turbulence model and cavitation criterion. A local density correction was used in the Reynolds-averaged Navier-Stokes turbulence model to reduce the turbulent viscosity, which facilitates the cavitation development. The turbulent stress was also considered in the cavitation inception stage. The modified model is capable of reproducing the cavitating flow with an affordable computational cost.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

High-Load Compression-Ignition Engine Emissions Reduction with Inverted Phi-Sensitivity Fuel Using Multiple Injection Strategies

2019-04-02
2019-01-0554
Inverted phi (ϕ)-sensitivity is a new approach of NOx reduction in compression-ignition (C.I.) engines. Previously, pure ethanol (E100) was selected as the preliminary test fuel in a single injection compression-ignition engine, and was shown to have good potential for low engine-out NOx emissions under low and medium load conditions due to its inverted ignition sequence. Under high load, however, the near-stoichiometric and non-homogeneous fuel/air distribution removes the effectiveness of the inverted ϕ-sensitivity. Therefore, it is desirable to recover the combustion sequence in the chamber such that the leaner region is burned before the near-stoichiometric region. When the combustion in near-stoichiometric region is inhibited, the temperature rise of that region is hindered and the formation of NOx is suppressed.
Journal Article

Dilution and Injection Pressure Effects on Ignition and Onset of Soot at Threshold-Sooting Conditions by Simultaneous PAH-PLIF and Soot-PLII Imaging in a Heavy Duty Optical Diesel Engine

2019-04-02
2019-01-0553
Although accumulated in-cylinder soot can be measured by various optical techniques, discerning soot formation rates from oxidation rates is more difficult. Various optical measurements have pointed toward ways to affect in-cylinder soot oxidation, but evidence of effects of operational variables on soot formation is less plentiful. The formation of soot and its precursors, including polycyclic aromatic hydrocarbons (PAHs), are strongly dependent on temperature, so factors affecting soot formation may be more evident at low-temperature combustion conditions. Here, in-cylinder PAHs are imaged by planar laser-induced fluorescence (PAH-PLIF) using three different excitation wavelengths of 355, 532, and 633 nm, to probe three different size-classes of PAH from 2-3 to 10+ rings. Simultaneous planar laser-induced incandescence of soot (soot-PLII) using 1064-nm excitation provides complementary imaging of soot formation near inception.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

2018-04-03
2018-01-0287
An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

Effect of Hydrogen Volume Ratio on the Combustion Characteristics of CNG-Diesel Dual-Fuel Engine

2017-10-08
2017-01-2270
CNG-diesel dual fuel combustion mode has been regarded as a practical operation strategy because it not only can remain high thermal efficiency but also make full use of an alternative fuel, natural gas. However, it is suffering from misfire and high HC emissions under cold start and low load conditions. As known, hydrogen has high flammability. Thus, a certain proportion of hydrogen can be added in the natural gas (named HCNG) to improve combustion performance. In this work, the effect of hydrogen volume ratio on combustion characteristics was investigated on an optically accessible single-cylinder CNG-diesel engine using a Phantom v7.3 color camera. HCNG was compressed into the tank under different hydrogen volume ratios varied from 0% to 30%, while the energy substitution rate of` HCNG remained at 70%.
Technical Paper

The Effects of Ethanol-Butanol Ratio on the Droplet Behavior During Impact onto a Heated Surface

2017-10-08
2017-01-2289
Droplets impacting onto the heated surface is a typical phenomenon either in CI engines or in GDI SI engines, which is regarded significant for their air-fuel mixing. Meanwhile, alcohols including ethanol and butanol, has been widely studied as internal combustion engine alternative fuels due to their excellent properties. In this paper, under different component ratio conditions, the ethanol-butanol droplet impacting onto the heated aluminum surface has been studied experimentally. The falling height of the droplets were set at 5cm. A high-speed camera, set at 512×512pixels, 5000 fps and 20 μs of exposure time, was used to visualize the droplet behavior impinging onto the hot aluminum surface. The impact regimes of the binary droplet were identified. The result showed that the Leidenfrost temperature of droplets was affected by the ratio of ethanol to butanol. The higher the content of butanol in the droplet, the higher the Leidenfrost temperature.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

An Efficient and Unified Combustion Model for CFD of SI and CI Engine Operation

2017-03-28
2017-01-0572
In this work, an efficient and unified combustion model is introduced to simulate the flame propagation, diffusion-controlled combustion, and chemically-driven ignition in both SI and CI engine operation. The unified model is constructed upon a G-equation model which addresses the premixed flame propagation. The concept of the Livengood-Wu integral is used with tabulated ignition delay data to account for the chemical kinetics which is responsible for the spontaneous ignition of fuel-air mixture. A set of rigorously defined operations are used to couple the evolution of the G scalar field and the Livengood-Wu integral. The diffusion-controlled combustion is simulated equivalent to applying the Burke-Schumann limit. The combined model is tested in the simulation of the premixed SI combustion in a constant volume chamber, as well as the CI combustion in a conventional small bore diesel engine.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
X