Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Low NOx Emissions Performance after 800,000 Miles Aging Using CDA and an Electric Heater

2024-07-02
2024-01-3011
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOX regulations on heavy duty vehicles in the United States and Europe. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

The Potential of Hydrogen High Pressure Direct Injection Toward Future Emissions Compliance: Optimizing Engine-Out NOx and Thermal Efficiency

2024-06-12
2024-37-0005
By building on mature internal combustion engine (ICE) hardware combined with dedicated hydrogen (H2) technology, the H2-ICE has excellent potential to accelerate CO2 reduction. H2-ICE concepts can therefore contribute to realizing the climate targets in an acceptable timeframe. In the landscape of H2-ICE combustion concepts, High Pressure Direct Injection (HPDI™) is an attractive option considering its high thermal efficiency, wide load range and its applicability to on-road as well as off-road heavy-duty equipment. Still, H2-HPDI is characterized by diffusion combustion, giving rise to significant NOx emissions. In this paper, the potential of H2-HPDI toward compliance with future emissions legislation is explored on a 1.8L single-cylinder research engine. With tests on multiple load-speed points, Exhaust Gas Recirculation (EGR) was shown to be an effective measure for reducing engine-out NOx, although at the cost of a few efficiency points.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

A Numerical Study of the Laminar Flame Speed of Hydrogen/Ammonia Mixtures under Engine-like Conditions

2024-06-12
2024-37-0020
In the effort to achieve the goal of a climate-neutral transportation system, the use of hydrogen and other synthetic fuels plays a key role. As battery electric vehicles become more widespread, e-fuels could be used to defossilize the hard-to-electrify transportation sectors and to store energy produced from renewable and non-continuous energy sources. Among e-fuels, hydrogen and ammonia are very attractive because they are carbon-neutral and their oxidation does not lead to any CO2 emissions. Furthermore, hydrogen/ammonia mixtures overcome the issues that arise as each of the two fuels is separately used. In the automotive sector, the use of either hydrogen, ammonia or their blends require a characterization of such mixtures under engine-like conditions, that is, at high pressures and temperatures. The aim of this work is to evaluate the Laminar Flame Speed (LFS) of hydrogen/ammonia mixtures by varying the thermodynamic conditions and the molar composition of the reactants.
Technical Paper

Acceleration of Fast-SCR Reactions by Eliminating “The Ammonia Blocking Effect”

2024-06-12
2024-37-0001
The recent and future trends of energy for heavy-duty vehicles are considered e-fuel, H2, and electricity, and the Selective Catalytic Reduction (SCR) system is necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel and H2 as a fuel. The Japanese automotive industry uses a Cu-zeolite based SCR catalyst since Vanadium is designated as a specific chemical substance, which the Ministry of Environment prohibits its release into the atmosphere. This study attempted purification rate improvement by controlling the NH3 supply with a mini-reactor and by simulated exhaust gas. Specifically, the experiment was done by examining the effect of the pulse amplitude, frequency, and duty ratio on the purification rate by supplying the NH3 pulse injection to the test piece Cu-chabazite catalyst. Additionally, the results of the reactor experiment were validated by numerical simulation considering the detailed surface reaction processes on the catalyst.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Knockdown Factor Estimation of Stiffened Cylinders under Combined Loads - A Numerical Study

2024-06-01
2024-26-0417
Airframe section of rockets, missiles and launch vehicles are typically cylindrical in shape. The cylindrical shell is subjected to high axial load and an external pressure during its operation. The design of cylinders subjected to such loads is generally found to be critical in buckling. To minimize the weight of cylinders, it is typically stiffened with rings and stringers on the inner diameter to increase the buckling load factor. Conventionally the buckling load estimated by analytical or numerical means is multiplied by an empirical factor generally called Knockdown factor (kdf) to get the critical buckling load. This factor is considered to account for the variation between theory and experiment and is specified by handbooks or codes. In aerospace industry, NASA SP 8007 is commonly followed and it specifies the kdf as a lower bound fit curve for experimental data .
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Optimizing Carbon Monoxide Emission Reduction Using Rice Husk Activated Carbon in Automobile Exhaust Systems

2024-04-29
2024-01-5054
This research effort is to optimize the conditions to minimize carbon monoxide (CO) gas emissions utilizing activated carbon derived from rice husks, an abundant agricultural waste. In the automobile industry, addressing vehicular emissions is crucial due to environmental ramifications and stringent regulatory mandates. This study presents an innovative and potentially cost-effective solution to capture CO emissions, mainly from motorcycles. The eco-friendly nature of using rice husks and the detailed findings on optimal conditions (20 m/s gas flow rate, 0.47 M citric acid concentration, and 30 g mass of activated carbon) make this research invaluable. These conditions achieved a commendable CO adsorption rate of 54.96 ppm over 1250 s. Essentially, the insights from this research could spearhead the development of sustainable automobile exhaust systems.
Technical Paper

Centrifugal Compressor Map Prediction Based on Geometrical Parameters with Invariant Coefficients

2024-04-24
2024-01-5056
In the present work, a new methodology for predicting the performance of centrifugal compressors is developed. The proposed method differs from existing methods found in literature by gathering principal losses in three parameters: two constants and one variable, which is a function of the compressor wheel geometrical characteristics. As those parameters are constants for a given centrifugal compressor, there is no need for additional corrective parameters in order to obtain coherent results. Indeed, the proposed methodology does not depend on the choice of the slip factor correlation for the prediction of the correct pressure ratio. However, the choice of slip factor influences the efficiency computation. The prediction of the compressor maps for two full stage centrifugal compressors is presented and they show good agreement while compared with manufacturer’s data obtained from gas stand measurements.
Technical Paper

Catalytic Converter—An Integrated Approach to Reduce Carbon Dioxide Emission

2024-04-22
2024-01-5047
Vehicle emissions, which are rising alarmingly quickly, are a significant contributor to the air pollution that results. Incomplete combustion, which results in the release of chemicals including carbon monoxide, hydrocarbons, and particulate matter, is the main cause of pollutants from vehicle emissions. However, CO2 contributes more than the aforementioned pollutants combined. Carbon dioxide is the main greenhouse gas that vehicles emit. For every liter of gasoline burned by vehicles, around 2,347 grams of carbon dioxide are released. Therefore, it’s important to reduce vehicle emissions of carbon dioxide. The ability of materials like zeolite and silicon dioxide to absorb CO2 is outstanding. These substances transform CO2 into their own non-polluting carbonate molecules. Zeolite, silicon dioxide, and calcium oxide are combined to form the scrubbing material in a ratio based on their increasing adsorption propensities, along with enough bentonite sand to bind the mixture.
Technical Paper

Modeling and Validation of the Tire Friction on Wet Road

2024-04-09
2024-01-2307
In order to study the tire friction characteristics under wet skid surface, the “pseudo” hydrodynamic pressure bearing effect is used to be equivalent to the hydrodynamics of water film, and an advanced Lugre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The water hydroplaning dynamic tests were carried out for 285/70R19.5 tire under wet of different water film thickness and dry conditions, and the parameters of the advanced Lugre tire dynamic model were identified. The results show that the tire water-skiing model proposed in this paper can effectively simulate the friction characteristics of tires under different water film thicknesses. Under dry conditions, 0.5mm water film and 1mm water film road conditions, the relative errors of the maximum tire friction coefficient between the tested and advanced Lugre tire model are 1.11%, 0.12% and 0.16%, respectively.
X