Refine Your Search

Topic

Affiliation

Search Results

Book

Automotive Lubricants and Testing

2012-10-31
This new book provides a comprehensive overview of various lubrication aspects of a typical powertrain system including the engine, transmission, driveline, chassis, and other components. The manual addresses major issues and current development status of automotive lubricant test methods. Topics also cover advanced lubrication and tribochemistry of the powertrain system, such as diesel fuel lubrication, specialized automotive lubricant testing development, filtration testing of automotive lubricants, lubrication of constant velocity joints, and biodegradable automotive lubricants.
Technical Paper

A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow

2012-04-16
2012-01-0364
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOx emissions. The presence of a cool surface in the hot exhaust causes particulate soot deposition as well as hydrocarbon and water condensation. Fouling experienced through deposition of particulate matter and hydrocarbons results in degraded cooler effectiveness and increased pressure drop. In this study, a visualization test setup is designed and constructed so that the effect of water condensation on the deposit formation and growth at various coolant temperatures can be studied. A water-cooled surrogate rectangular channel is employed to represent the EGR cooler. One side of the channel is made of glass for visualization purposes. A medium duty diesel engine is used to generate the exhaust stream.
Journal Article

Review of Soot Deposition and Removal Mechanisms in EGR Coolers

2010-04-12
2010-01-1211
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOX emissions. Engine coolant is used to cool EGR coolers. The presence of a cold surface in the cooler causes fouling due to particulate soot deposition, condensation of hydrocarbon, water and acid. Fouling experience results in cooler effectiveness loss and pressure drop. In this study, possible soot deposition mechanisms are discussed and their orders of magnitude are compared. Also, probable removal mechanisms of soot particles are studied by calculating the forces acting on a single particle attached to the wall or deposited layer. Our analysis shows that thermophoresis in the dominant mechanism for soot deposition in EGR coolers and high surface temperature and high kinetic energy of soot particles at the gas-deposit interface can be the critical factor in particles removal.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Technical Paper

A Test Method for Evaluating Material Combinations of Automotive Camshaft and Follower Components Subjected to Lubricated Sliding Simulating Variable Valve Actuation

2007-07-23
2007-01-1970
Cam phasing and Variable Valve Actuation (VVA) are used increasingly to alter the opening and closing of the valves to improve fuel economy by most of the automotive engine manufacturers. In instances where the design constraints require use of rolling and sliding follower interfaces with camshaft lobes, several solutions are possible. However, finding an inexpensive solution is challenging. This paper briefly reviews some of the conventional wear test methods that have primarily been used for piston ring cylinder liner wear assessments. Later on a new test method developed using the modified Optimol SRV 4 wear tester is described. This test method was used to assess and rank material combinations for sliding wear assessment of various camshaft lobe and follower components.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Dual-Use Engine Calibration:

2005-04-11
2005-01-1549
Modern diesel engines manufactured for commercial vehicles are calibrated to meet EPA emissions regulations. Many of the technologies and strategies typically incorporated to meet emissions targets compromise engine performance and efficiency. When used in military applications, however, engine performance and efficiency are of utmost importance in combat conditions or in remote locations where fuel supplies are scarce. This motivates the study of the potential to utilize the flexibility of emissions-reduction technologies toward optimizing engine performance while still keeping the emissions within tolerable limits. The study was conducted on a modern medium-duty International V-8 diesel engine with variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR). The performance-emissions tradeoffs were explored using design of experiments and response surface methodology.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

2004-10-25
2004-01-2939
The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

Assessment of Correlation Between Bench Wear Test Results and Engine Cylinder Wear, Short-Trip Service

2000-10-16
2000-01-2947
Bench tests are often less expensive and faster than vehicle tests. However, correlation between bench tests and the engine needs to be proven, otherwise bench tests may be misleading. This investigation explored the relationships between bench wear test results and engine results from short-trip driving tests for a variety of conditions: fresh vs. used oil, different methods for assessing wear, and chemical effects such as oil contamination and differences in the fuel. There was a negative correlation between bench tests with fresh oil compared to vehicle test results with used oil, which suggests that bench wear characteristics of fresh engine oil should not be used to determine engine wear rates under the conditions tested here. Statistical analysis of bench test wear rates with used engine oil, compared to engine wear measurements, indicated that the trends were in an appropriate direction, with some scatter in the results.
Technical Paper

An Investigation of Tribological Characteristics of Energy-Conserving Engine Oils Using a Reciprocating Bench Test

2000-06-19
2000-01-1781
Engine design and tribology engineers are constantly challenged to develop advanced products with reduced weight, reduced friction, longer life, and higher engine operating temperatures. The resulting engine systems must also meet more demanding emissions and fuel economy targets. Advanced energy-conserving lubricants and surface coatings are concurrently evolving to meet the needs of new engine materials. Because of the enormous cost and time associated with engine testing, much interest is being focused on the development of representative and repeatable bench tests for evaluation of engine materials and lubricants. The authors have developed a bench test employing reciprocating motion for evaluating friction and energy-conserving characteristics of lubricants.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

A Methodology for Cycle-By-Cycle Transient Heat Release Analysis in a Turbocharged Direct Injection Diesel Engine

2000-03-06
2000-01-1185
This study presents a systematic methodology for performing transient heat release analysis in a diesel engine. Novel techniques have been developed to infer the mass of air trapped in the cylinder and the mass of fuel injected on a cycle-by-cycle basis. The cyclic mass of air trapped in the cylinder is found accounting for pressure gradients, piston motion and short-circuiting during the valve overlap period. The cyclic mass of fuel injected is computed from the injection pressure history. These parameters are used in conjunction with cycle-resolved pressure data to accurately define the instantaneous thermodynamic state of the mixture. This information is used in the calculation and interpretation of transient heat release profiles.
X