Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-22
2019-01-2599
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall.
Technical Paper

Emissions from Low- and Mid-Level Blends of Anhydrous Ethanol in Gasoline

2019-04-02
2019-01-0997
Typically ethanol is present in gasoline as a 10% blend by volume (E10), although E15, E85 (51 to 83%), and E0 are also available at selected stations. Numerous studies of tailpipe regulated emissions have been conducted to compare emissions from E10 and E0, and there is a growing body of literature addressing blends of E15 and higher. Isolating the effect of ethanol in a study is philosophically difficult, because the ethanol naturally displaces some hydrocarbons, because the ethanol interacts with the remaining gasoline, and because properties of mixing are often nonlinear. Some studies have used splash blending, simply mixing the ethanol with a reference gasoline to produce a blend for comparison to the reference. Others have used match blending, where the objective is to match selected properties of the blend to properties of a reference gasoline.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Journal Article

Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device

2014-04-01
2014-01-1099
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
Journal Article

In-Use Fuel Economy and CO2 Emissions Measurement using OBD Data on US Light-Duty Vehicles

2014-04-01
2014-01-1623
Fuel economy (FE) and greenhouse gas (GHG) emissions measured via chassis testing under laboratory conditions were never intended to represent the wide range of real-world driving conditions that are experienced during a vehicle's lifetime. Comprehensive real-world information is needed to better assess US FE label adjustments, determine off-cycle credits for FE standards, and forecast real-world driving behavior, fuel consumption, and CO2 emissions. This paper explores a cost effective method to collect in-use fuel consumption data using the on-board diagnostics (OBD) data stream in light-duty vehicles (LDVs). The accuracy of fuel consumption calculated from the OBD data was analyzed in two ways. First, fuel rates calculated from standard OBD Parameter IDs (PIDs) were compared with fuel rate estimates based on enhanced PID (OEM fuel injector fuel rate) data in two different vehicles.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Greenhouse Gas Emissions of MY 2010 Advanced Heavy Duty Diesel Engine Measured Over a Cross-Continental Trip of USA

2013-09-08
2013-24-0170
The study was aimed at assessing in-use emissions of a USEPA 2010 emissions-compliant heavy-duty diesel vehicle powered by a model year (MY) 2011 engine using West Virginia University's Transportable Emissions Measurement System (TEMS). The TEMS houses full-scale CVS dilution tunnel and laboratory-grade emissions measurement systems, which are compliant with the Code of Federal Regulation (CFR), Title 40, Part 1065 [1] emissions measurement specifications. One of the specific objectives of the study, and the key topic of this paper, is the quantification of greenhouse gas (GHG) emissions (CO2, N2O and CH4) along with ammonia (NH3) and regulated emissions during real-world operation of a long-haul heavy-duty vehicle, equipped with a diesel particulate filter (DPF) and urea based selective catalytic reduction (SCR) aftertreatment system for PM and NOx reduction, respectively.
Technical Paper

Estimated Cost of Emission Control Technologies for Light-Duty Vehicles Part 2 - Diesel

2013-04-08
2013-01-0539
The cost of meeting standards for conventional pollutant emissions is a perennial bone of contention in arguments over vehicle emission regulations. The public health benefits of the most stringent standards have been repeatedly and conclusively demonstrated, and the control technologies are readily available. Nevertheless, countries with the largest vehicle markets worldwide differ greatly in the rates at which they are willing to adopt the most stringent emission standards-and some of those whose populations would benefit most lag furthest behind the best achievable standards. Among the reasons often given for delaying the implementation of stricter standards is the extra cost added to the vehicle by the emission control system. As part of a two series paper, this paper addresses the cost of diesel light-duty emission control technology by regulatory level, from early stages to upcoming levels, and presents a comparison with gasoline emission control technologies.
Technical Paper

Estimated Cost of Emission Control Technologies for Light-Duty Vehicles Part 1 - Gasoline

2013-04-08
2013-01-0534
The cost of meeting standards for conventional pollutant emissions is a perennial bone of contention in arguments over vehicle emission regulations. The public health benefits of the most stringent standards have been repeatedly and conclusively demonstrated, and the control technologies are readily available. Nevertheless, countries with the largest vehicle markets worldwide differ greatly in the rates at which they are willing to adopt the most stringent emission standards-and some of those whose populations would benefit most lag furthest behind. Among the reasons often given for delaying the implementation of stricter standards is the extra cost added to the vehicle by the emission control system. This two-part series paper assesses separately the cost of emission control technologies for gasoline and diesel light duty vehicles. In part one, the paper addresses the cost of gasoline light-duty emission control technology by regulatory level, from early stages to upcoming levels.
Technical Paper

Technical Assessment of Emission and Fuel Consumption Reduction Potential from Two and Three Wheelers in India

2013-01-09
2013-26-0050
The large fleet share and rapid growth of two and three wheeler vehicles in India means that careful attention must be paid to reducing emissions and fuel consumption from these vehicles. Emission standards and emission control technologies employed in passenger vehicles have not fully migrated to two and three wheelers. Fuel economy standards and advanced fuel efficient technologies, which offer great potential for reducing sector energy consumption, have also not been implemented for this important mode of transportation. This paper contains an overview of the engine technology changes and after-treatment systems being employed by Indian two and three-wheeler manufacturers to meet the Bharat Stage-III emission standards. An assessment of technical options to meet future emission standards is discussed. Adoption of evaporative emissions and on-board diagnostic systems technologies are discussed as well.
Technical Paper

Chassis Dynamometer Emissions Characterization of a Urea-SCR Transit Bus

2012-06-01
2011-01-2469
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

2011-09-11
2011-24-0183
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Technical Paper

Fresh and Aged SCRT Systems Retrofitted on a MY 1998 Class-8 Tractor: Investigation on In-use Emissions

2011-09-11
2011-24-0175
In order to comply with stringent 2010 US-Environmental Protection Agency (EPA) on-road, Heavy-Duty Diesel (HDD) emissions regulations, the Selective Catalytic Reduction (SCR) aftertreatment system has been judged by a multitude of engine manufacturers as the primary technology for mitigating emissions of oxides of nitrogen (NOx). As virtually stand-alone aftertreatment systems, SCR technology further represents a very flexible and efficient solution for retrofitting legacy diesel engines as the most straightforward means of cost-effective compliance attainment. However, the addition of a reducing agent injection system as well as the inherent operation limitations of the SCR system due to required catalyst bed temperatures introduce new, unique problems, most notably that of ammonia (NH₃) slip.
Technical Paper

Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop

2011-09-11
2011-24-0187
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
Journal Article

An Empirical Approach in Determining the Effect of Road Grade on Fuel Consumption from Transit Buses

2010-10-05
2010-01-1950
Transit buses contribute a meager amount to the U.S. criteria pollutant and greenhouse gas (GHG) inventory, but they attract a lot of attention from the public and from local government, due to their nature of operation. Transit bus fleets are often employed for the introduction of advanced heavy-duty vehicle technology and the formulation of new performance models. Emissions and fuel consumption data, gained using a chassis dynamometer, are often used to evaluate performance of these buses. However, the effect of road grade on fuel consumption and emissions most often is not accounted for in chassis dynamometer characterization. Grade effect on transit buses' fuel consumption was investigated using the road-load equation. It was observed that two parameters, including the type of terrain that buses traverse and the percentage of grade for that terrain, needed to be determined for this investigation.
Technical Paper

Modeling and Validation of an Over-the-Road Truck

2010-10-05
2010-01-2001
Heavy-duty trucks are an important sector to evaluate when seeking fuel consumption savings and emissions reductions. With fuel costs on the rise and emissions regulations becoming stringent, vehicle manufacturers find themselves spending large amounts of capital improving their products in order to be compliant with regulations. The Powertrain System Analysis Toolkits (PSAT), developed by the Argonne National Laboratory (ANL), is a simulation tool that helps mitigate costs associated with research and automotive system design. While PSAT has been widely used to predict the fuel consumption and exhaust emissions of conventional and hybrid light-duty vehicles, it also may be employed to test heavy-duty vehicles. The intent of this study was to develop an accurate model that predicts emissions and fuel economy for heavy-duty vehicles for use within PSAT.
X