Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2017-22-0004
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Development of A New Dynamic Rollover Test Methodology for Heavy Vehicles

2017-03-28
2017-01-1457
Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
Technical Paper

Reconstruction of Pediatric Occupant Kinematic Responses Using Finite Element Method in a Real-World Lateral Impact

2017-03-28
2017-01-1462
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Testing and Modeling the Responses of Hybrid III Crash-Dummy Lower Extremity under High-speed Vertical Loading

2015-11-09
2015-22-0018
Anthropometric test devices (ATDs), such as the Hybrid III crash-test dummy, have been used to simulate lower-extremity responses to military personnel subjected to loading conditions from anti-vehicular (AV) landmine blasts. Numerical simulations [e.g., finite element (FE) analysis] of such high-speed vertical loading on ATD parts require accurate material parameters that are dependent on strain rate. This study presents a combined experimental and computational study to calibrate the rate-dependent properties of three materials on the lower extremities of the Hybrid III dummy. The three materials are heel-pad foam, foot skin, and lower-leg flesh, and each has properties that can affect simulation results of forces and moments transferred to the lower extremities.
Technical Paper

Effects of Crash Pulse, Impact Angle, Occupant Size, Front Seat Location, and Restraint System on Rear Seat Occupant Protection

2015-04-14
2015-01-1453
In this study, two sled series were conducted with a sled buck representing a compact vehicle. The first series of tests focused on the effects of crash pulse, impact angle, occupant size, and front seat location on rear seat occupant restraint with a generic rear-seat belt system without pre-tensioner or load limiter. The second series of tests focused on investigating the benefit of using advanced features for rear-seat occupant restraint in the most severe crash condition in the first sled series. The first series of tests include 16 test conditions with two impact angles (0° and 15°), two sled pulse (soft and severe), and four ATD sizes (HIII 6YO, HIII 5th female, HIII 95th male, and THOR-NT) with two ATDs in each test. The driver seat was located at the mid position, while the front passenger seat was positioned such that a constant distance between the ATD knee and the front seat is achieved.
Technical Paper

Installed Positions of Child Restraint Systems in Vehicle Second Rows

2015-04-14
2015-01-1452
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, creating a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. CRS were marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers' directions, and the reference points of each CRS component were measured to document the installed orientation.
Technical Paper

Effect of Vehicle Front End Profiles Leading to Pedestrian Secondary Head Impact to Ground

2013-11-11
2013-22-0005
Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Technical Paper

Computational Investigation of the Effects of Driver and Vehicle Interior Factors on the Risk of Knee-Thigh-Hip Injuries in Frontal Crashes

2010-04-12
2010-01-1023
The effects of seatbelt use, muscle tension, lower-extremity posture, driver fore-aft seat position, seat height, and seat angle on the likelihood of knee, thigh, and hip (KTH) injuries during knee-to-knee-bolster impacts in frontal crashes were studied using a finite element (FE) human model. A midsize male whole-body FE model, with a previously validated knee-impact response, was further validated in this study against whole-body responses from two sets of cadaver sled tests. This human model was integrated with vehicle instrument panel, seat, and restraint-system models. An FMVSS 208 crash pulse of a passenger car was used to evaluate the effects of the aforementioned factors on the risk of KTH injuries. Simulation results indicated that seatbelts significantly reduced peak forces generated at the knee, in the thigh, and at the hip, and thereby reduced the risk of KTH injuries.
X